【題目】如圖,直線l上有兩動點C、D,點A、點B在直線l同側,且A點與B點分別到l的距離為a米和b米(即圖中AA′=a米,BB′=b米),且A′B′=c米,動點CD之間的距離總為S米,使CA的距離與DB的距離之和最小,則AC+BD的最小值為( 。

A. B.

C. D.

【答案】D

【解析】

作線段AP∥LAP=S,且點P在點A的右側,作P關于L的對稱點P′,連接BP′交直線L于點D,在LD的左側截取DC=S,此時BP′即為所求的最小值,作P′E⊥BB′BB′的延長線于E,利用勾股定理求解即可.

解:作線段AP∥LAP=S,且點P在點A的右側,作P關于L的對稱點P′,連接BP′交直線L于點D,
∵P′E=c-SBE=a+b,
∴P′B==.
故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一批襯衫,平均每天可售出20件,每件盈利40為了擴大銷售,增加盈利,商場決定采取降價措施,經(jīng)調查發(fā)現(xiàn),若毎件襯衫每降價1元,商場平均每天可多售出2件.

若每件降價x元,每天盈利y元,求出yx之間的關系式;

每件襯衫降價多少元時,商場每天盈利最多?盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級數(shù)學興趣小組經(jīng)過市場調查,得到某種運動服每月的銷量是售價的一次函數(shù),且相關信息如下表:

售價(元/件)

100

110

120

130

月銷量(件)

200

180

160

140

已知該運動服的進價為每件60元,設售價為x元.

1)請用含x的式子表示:①銷售該運動服每件的利潤是(   )元;

2)求月銷量y與售價x的一次函數(shù)關系式:

3)設銷售該運動服的月利潤為W元,那么售價為多少元時,當月的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知,點PAB邊上的一個動點,點E、F分別是CA,CB邊的中點,過點PD,設,圖中某條線段的長為y,如果表示yx的函數(shù)關系的大致圖象如圖2所示,那么這條線段可能是

A. PDB. PEC. PCD. PF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校興趣小組就最想去的金華最美村落隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的最美鄉(xiāng)村下面是根據(jù)調查結果繪制出的不完整的統(tǒng)計圖

請根據(jù)圖中提供的信息,解答下列問題:

被調查的學生總人數(shù)為______人;

扇形統(tǒng)計圖中最想去鄉(xiāng)村D”的扇形圓心角的度數(shù)為______;

若該校共有800名學生,請估計最想去鄉(xiāng)村B”的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,以RtABCAC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,作OFABBC于點F,連接EF

1)求證:OFCE

2)求證:EF是⊙O的切線;

3)若⊙O的半徑為3,∠EAC60°,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.

(1)從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;

(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解決問題:

如圖,半徑為4外有一點P,且,點A上,則PA的最大值和最小值分別是____________

如圖,扇形AOB的半徑為4,,P為弧AB上一點,分別在OA邊找點E,在OB邊上找一點F,使得周長的最小,請在圖中確定點E、F的位置并直接寫出周長的最小值;

拓展應用

如圖,正方形ABCD的邊長為;ECD上一點不與D、C重合F,PBE上,且M、N分別是ABAC上動點,求周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O的直徑AB長為10,弦AC長為6,∠ACB的平分線交O于點D,則BC的長為_____,CD的長_____

查看答案和解析>>

同步練習冊答案