【題目】如圖,AB為⊙O的直徑,AD與⊙O相切于一點A,DE與⊙O相切于點E,點C為DE延長線上一點,且CE=CB.
⑴求證:BC為⊙O的切線;
⑵若AB=2,AD=2,求線段BC的長.
【答案】
【解析】
試題(1)因為BC經過圓的半徑的外端,只要證明AB⊥BC即可.連接OE、OC,利用△OBC≌△OEC,得到∠OBC=90°即可證明BC為⊙O的切線.
(2)作DF⊥BC于點F,構造Rt△DFC,利用勾股定理解答即可.
試題解析:(1)證明:連接OE、OC.
∵CB=CE,OB=OE,OC=OC,
∴△OBC≌△OEC.
∴∠OBC=∠OEC.
又∵DE與⊙O相切于點E,
∴∠OEC=90°.
∴∠OBC=90°.
∴BC為⊙O的切線.
(2)解:過點D作DF⊥BC于點F,則四邊形ABFD是矩形,BF=AD=2,DF=AB=2.
∵AD、DC、BC分別切⊙O于點A、E、B,
∴DA=DE,CE=CB.
設BC為x,則CF=x﹣2,DC=x+2.
在Rt△DFC中,(x+2)2﹣(x﹣2)2=(2)2,解得x=.
∴BC=.
科目:初中數學 來源: 題型:
【題目】已知:如圖①,在平行四邊形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向勻速平移得到△PNM,速度為1cm/s;同時,點Q從點C出發(fā),沿著CB方向勻速移動,速度為1cm/s;當△PNM停止平移時,點Q也停止移動,如圖②.設移動時間為t(s)(0<t<4).連接PQ、MQ、MC.解答下列問題:
(1)當t為何值時,PQ∥AB?
(2)當t=3時,求△QMC的面積;
(3)是否存在某一時刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AE是△ABC的角平分線;ED平分∠AEB交AB于點D;∠CAE=∠B.
(1)如果AC=3.5 cm,求AB的長度;
(2)猜想:ED與AB的位置關系,并證明你的猜想。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校計劃一次性購買排球和籃球,每個籃球的價格比排球貴30元;購買2個排球和3個籃球共需340元.
(1)求每個排球和籃球的價格:
(2)若該校一次性購買排球和籃球共60個,總費用不超過3800元,且購買排球的個數少于39個.設排球的個數為m,總費用為y元.
①求y關于m的函數關系式,并求m可取的所有值;
②在學校按怎樣的方案購買時,費用最低?最低費用為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,的三個頂點在邊長為1的正方形網格中,已知,,.
(1)畫出關于軸對稱的(其中,,分別是,,的對應點,不寫畫法);
(2)分別寫出,,三點的坐標.
(3)請寫出所有以為邊且與全等的三角形的第三個頂點(不與重合)的坐標_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(x為任意實數)經過下圖中兩點M(1,﹣2)、N(m,0),其中M為拋物線的頂點,N為定點.下列結論:
①若方程ax2+bx+c=0的兩根為x1,x2(x1<x2),則﹣1<x1<0,2<x2<3;
②當x<m時,函數值y隨自變量x的減小而減。
③a>0,b<0,c>0.
④垂直于y軸的直線與拋物線交于C、D兩點,其C、D兩點的橫坐標分別為s、,則s+t=2.
其中正確的是( )
A. ①② B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明和媽媽開車去中央公園采風,小明爸爸發(fā)現(xiàn)他們忘記帶畫筆后立即開車追趕他們.假設媽媽和爸爸的車在同一直線公路上勻速行駛,當爸爸的車追上媽媽的車后,兩車停下來,爸爸把畫筆交給小明.然后小明和媽媽開車以原來速度的倍繼續(xù)前行,爸爸則以來時一半的速度沿原路回家.設小明爸爸開車的時間為(秒),兩車間的距離為(米),關于的部分函數關系如圖所示,當小明爸爸回到家時,小明和媽媽正好行駛了全程的,則小明家離中央公園的距離為________米
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com