【題目】問(wèn)題發(fā)現(xiàn):數(shù)學(xué)興趣小組在活動(dòng)時(shí),老師提出了這樣一個(gè)問(wèn)題:如圖①,在RtABC中,∠BAC90°BC10,ADBC邊上的中線,求AD的長(zhǎng)度.小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:延長(zhǎng)ADE,使DEAD,則ADAE

在△ADC和△EDB

∴△ADC≌△EDB

∴∠DBE=∠DCA,BEAC

BEAC

∴∠EBA+BAC180°

∵∠BAC90°

∴∠EBA90°

在△EBA和△CAB

∴△EBA≌△CAB

AEBC

BC10

ADAEBC5

1)若將上述問(wèn)題中條件“BC10”換成“BCa”,其他條件不變,則可得AD   

從上得到結(jié)論:直角三角形斜邊上的中線,等于斜邊的一半.

(感悟)解題時(shí),條件中若出現(xiàn)“中點(diǎn)”“中線”等字樣,可以考慮延長(zhǎng)中線構(gòu)造全等三角形進(jìn)而求解.

問(wèn)題解決:(2)如圖②,在四邊形ABCD中,ADBC,∠D90°,MAB的中點(diǎn).若CM6.5,BC+CD+DA17,求四邊形ABCD的面積.

問(wèn)題拓展:(3)如圖③,在平行四邊形ABCD中,AD2AB,FAD的中點(diǎn),作CEAB,垂足E在線段AB上,連接EFCF,∠DFE與∠AEF的度數(shù)滿(mǎn)足數(shù)量關(guān)系:∠DFEkAEF,求k的值.

【答案】1;(230;(3k3

【解析】

問(wèn)題發(fā)現(xiàn)(1):證明△ADC≌△EDBSAS),可得∠DBE=∠DCA,BEAC,證明△EBA≌△CABSAS),可得出AEBC,則可求出答案;

問(wèn)題解決:(2)延長(zhǎng)CM、DA交于點(diǎn)E.根據(jù)AAS可以證明△AME≌△BMC,則MEMC6.5,AEBC;根據(jù)BC+CD+DA17,得DE+DC17①,根據(jù)勾股定理,得DE2+DC2CE2169②,聯(lián)立求得DECD的值,即可求得答案;

問(wèn)題拓展:(3)連接CF并延長(zhǎng)交BA的延長(zhǎng)線于G,先證明CFGF,再由直角三角形斜邊上的中線性質(zhì)可證明EFCF,得出∠G=∠FEG,再證明AFAG,得出∠G=∠AFG=∠DFC,即可求出答案.

解:(1)問(wèn)題發(fā)現(xiàn):

延長(zhǎng)ADE,使DEAD,則ADAE,

在△ADC和△EDB中,

,

∴△ADC≌△EDBSAS),

∴∠DBE=∠DCA,BEAC

BEAC,

∴∠EBA+BAC180°,

∵∠BAC90°

∴∠EBA90°

在△EBA和△CAB中,

,

∴△EBA≌△CABSAS

AEBC,

BCa

ADAEBC

故答案為:

問(wèn)題解決:(2

如圖②,延長(zhǎng)CMDA交于點(diǎn)E

ADBC,

∴∠MAE=∠B,∠E=∠BCM

AMBM,

∴△AME≌△BMCAAS).

MEMC6.5,AEBC

BC+CD+DA17,∠D90°,

DE+DC17①,DE2+DC2CE2169②.

DECD [DE+DC2DE2DC2]60

∴四邊形ABCD的面積為SDECD30

問(wèn)題拓展:(3

連接CF并延長(zhǎng)交BA的延長(zhǎng)線于G,如圖③所示:

∵四邊形ABCD是平行四邊形,

ABCD

FAD的中點(diǎn),

CFGF,

CEAB,

∴∠CEG90°

EFCGCFGF,

∴∠G=∠FEG,

ADBC,CFGF,

AGAB

AFAG,

∴∠G=∠AFG=∠DFC

∵∠CFE=∠G+AEF,

∴∠DFE=∠CFE+DFC3AEF

∵∠DFEkAEF,

k3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)從原點(diǎn)出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),同時(shí)點(diǎn)也從原點(diǎn)出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng),秒后,兩點(diǎn)相距個(gè)單位長(zhǎng)度,已知點(diǎn)的速度是點(diǎn)的速度的倍(速度單位:?jiǎn)挝婚L(zhǎng)度/秒).

1)求出點(diǎn)、點(diǎn)運(yùn)動(dòng)的速度,并在數(shù)軸上標(biāo)出兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)秒時(shí)的位置.

2)若兩點(diǎn)從(1)中的位置開(kāi)始,仍以原來(lái)的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng),幾秒時(shí),原點(diǎn)恰好處在點(diǎn)、點(diǎn)的正中間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義符號(hào)min{a,bc}表示a、bc三個(gè)數(shù)中的最小值,如min{1,﹣2,3}=﹣2min{0,55}0

1)根據(jù)題意填空:min   ;

2)試求函數(shù)ymin{2x+1,﹣3x+11}的解析式;

3)關(guān)于x的方程﹣x+mmin{2,x+1,﹣3x+11}有解,試求常數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某品牌的飲料有大瓶裝與小瓶裝之分某超市花了3800元購(gòu)進(jìn)一批該品牌的飲料共1000,其中大瓶和小瓶飲料的進(jìn)價(jià)及售價(jià)如下表所示:

大瓶

小瓶

進(jìn)價(jià)(/)

5

2

售價(jià)(/)

7

3

(1)該超市購(gòu)進(jìn)大瓶和小瓶飲料各多少瓶?

(2)在大瓶飲料售出200,小瓶飲料售出100瓶后,商家決定將剩下的小瓶飲料的售價(jià)降低0.5元銷(xiāo)售,并把其中一定數(shù)量的小瓶飲料作為贈(zèng)品在顧客一次性購(gòu)買(mǎi)大瓶飲料時(shí),每滿(mǎn)2瓶就送1瓶小瓶飲料送完即止超市要使這批飲料售完后獲得的利潤(rùn)不低于1250,那么小瓶飲料作為贈(zèng)品最多只能送出多少瓶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果∠α和∠β互補(bǔ),且∠α>β,則下列表示∠β的余角的式子中:①90°﹣β;②∠α﹣90°α+β);α﹣β).正確的有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,動(dòng)點(diǎn)A,B同時(shí)從原點(diǎn)O出發(fā),運(yùn)動(dòng)的速度都是每秒1個(gè)單位,動(dòng)點(diǎn)A沿x軸正方向運(yùn)動(dòng),動(dòng)點(diǎn)B沿y軸正方向運(yùn)動(dòng),以O(shè)A,OB為鄰邊建立正方形OACB,拋物線y=﹣x2+bx+c經(jīng)過(guò)B,C兩點(diǎn),假設(shè)A,B兩點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒:
根據(jù)
(1)直接寫(xiě)出直線OC的解析式;
(2)當(dāng)t=3秒時(shí),求此時(shí)拋物線的解析式;此時(shí)拋物線上是否存在一點(diǎn)D,使得SBCD=6?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由;
(3)在(2)的條件下,有一條平行于y軸的動(dòng)直線l,交拋物線于點(diǎn)E,交直線OC于點(diǎn)F,若以O(shè)、B、E、F四個(gè)點(diǎn)構(gòu)成的四邊形是平行四邊形,求點(diǎn)F的坐標(biāo);
(4)在動(dòng)點(diǎn)A、B運(yùn)動(dòng)的過(guò)程中,若正方形OACB內(nèi)部有一個(gè)點(diǎn)P,且滿(mǎn)足OP= ,CP=2,∠OPA=135°,直接寫(xiě)出此時(shí)AP的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,MABC的邊BC的中點(diǎn),AN平分BNAN于點(diǎn)N,延長(zhǎng)BNAC于點(diǎn)D,已知AB=10AC=16.

1)求證:BN=DN;

2)求MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為鼓勵(lì)居民節(jié)約用電,我市自2012年以來(lái)對(duì)家庭用電收費(fèi)實(shí)行階梯電價(jià),即每月對(duì)每戶(hù)居民的用電量分為三個(gè)檔級(jí)收費(fèi),第一檔為用電量在180千瓦時(shí)(含180千瓦時(shí))以?xún)?nèi)的部分,執(zhí)行基本價(jià)格;第二檔為用電量在180千瓦時(shí)到450千瓦時(shí)(含450千瓦時(shí))的部分,實(shí)行提高電價(jià);第三檔為用電量超出450千瓦時(shí)的部分,執(zhí)行市場(chǎng)調(diào)節(jié)價(jià)格. 我市一位同學(xué)家今年2月份用電330千瓦時(shí),電費(fèi)為213元,3月份用電240千瓦時(shí),電費(fèi)為150元.已知我市的一位居民今年45月份的家庭用電量分別為160410千瓦時(shí),請(qǐng)你依據(jù)該同學(xué)家的繳費(fèi)情況,計(jì)算這位居民4、5月份的電費(fèi)分別為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案