【題目】共有1500kg化工原料,由A,B兩種機器人同時搬運,其中,A型機器人比B型機器每小時多搬運30kgA型機器人搬運900kg所用時間與B型機器人搬運600kg所用時間相等,問需要多長時間才能運完?

【答案】兩種機器人需要10小時搬運完成

【解析】

先設(shè)兩種機器人需要x小時搬運完成,然后根據(jù)工作效率=工作總量÷工作時間,結(jié)合A型機器人比B型機器每小時多搬運30kg,得出方程并且進行解方程即可.

解:設(shè)兩種機器人需要x小時搬運完成,

900kg+600kg=1500kg,

A型機器人需要搬運900kgB型機器人需要搬運600kg

依題意,得:=30,

解得:x=10

經(jīng)檢驗,x=10是原方程的解,且符合題意.

答:兩種機器人需要10小時搬運完成.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形BCDE的各邊分別平行于x軸與y軸,物體甲和物體乙由點A2,0)同時出發(fā),沿矩形BCDE的邊作環(huán)繞運動,物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2018次相遇地點的坐標(biāo)是(  )

A. 1,﹣1 B. 20 C. (﹣1,1 D. (﹣1,﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,有一張矩形紙片ABCD,AB4BC8,點MN分別在矩形的邊AD,BC上,將矩形紙片沿直線MN折疊,使點C落在矩形的邊AD上,記為點P,點D落在G處,連接PC,交MN于點Q,連接CM

1)求證:四邊形CMPN是菱形;

2)當(dāng)PA重合時,如圖2,求MN的長;

3)設(shè)△PQM的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級學(xué)生的視力情況,隨機抽樣調(diào)查了部分九年級學(xué)生的視力,以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.

分組

視力

人數(shù)

A

3.95x4.25

3

B

4.25x4.55

   

C

4.55x4.85

18

D

4.85x5.15

8

E

5.15x5.45

   

根據(jù)以上信息,解谷下列問題:

1)在被調(diào)查學(xué)生中,視力在3.95x4.25范圍內(nèi)的人數(shù)為   人;

2)本次調(diào)查的樣本容量是   ,視力在5.15x5.45范圍內(nèi)學(xué)生數(shù)占被調(diào)查學(xué)生數(shù)的百分比是   %;

3)在統(tǒng)計圖中,C組對應(yīng)扇形的圓心角度數(shù)為   °;

4)若該校九年級有400名學(xué)生,估計視力超過4.85的學(xué)生數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程x2+(2k+1)x+k2+2=0有兩個實數(shù)根x1,x2.

(1)求實數(shù)k的取值范圍;

(2)x1,x2滿足|x1|+|x2|=|x1x2|-1,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中,點DBC邊上,點EAC的延長線上,DE=DA(如圖1)

(1)求證:∠BAD=EDC

(2)若點E關(guān)于直線BC的對稱點為M(如圖2),連接DM,AM.求證:DA=AM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會向全校名學(xué)生發(fā)起了愛心捐款活動,為了解捐款情況,學(xué)生會隨機調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計圖1和圖2,請根據(jù)相關(guān)信息,解答下列問題:

1)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為 人,圖的值是

2)補全圖2的統(tǒng)計圖.

3)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

4)根據(jù)樣本數(shù)據(jù),估計該校本次活動捐款金額為元的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某海濱浴場有100個遮陽傘,每個每天收費10元時,可全部租出,若每個每天提高2元,則減少10個傘租出,若每個每天收費再提高2元,則再減少10個傘租出,…,為了投資少而獲利大,每個每天應(yīng)提高( )
A.4元或6元
B.4元
C.6元
D.8元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某小區(qū)要用籬笆圍成一矩形花壇,花壇的一邊用足夠長的墻,另外三邊所用的籬笆之和恰好為 米.

(1)求矩形 的面積(用 表示,單位:平方米)與邊 (用 表示,單位:米)之間的函數(shù)關(guān)系式(不要求寫出自變量 的取值范圍);怎樣圍,可使花壇面積最大?
(2)如何圍,可使此矩形花壇面積是 平方米?

查看答案和解析>>

同步練習(xí)冊答案