【題目】如圖所示,某小區(qū)要用籬笆圍成一矩形花壇,花壇的一邊用足夠長的墻,另外三邊所用的籬笆之和恰好為 米.

(1)求矩形 的面積(用 表示,單位:平方米)與邊 (用 表示,單位:米)之間的函數(shù)關(guān)系式(不要求寫出自變量 的取值范圍);怎樣圍,可使花壇面積最大?
(2)如何圍,可使此矩形花壇面積是 平方米?

【答案】
(1)解:AB=x,則BC=16-2x,
根據(jù)矩形的面積公式可得:S=x(16-2x)=-2x2+16x=-2(x-4)2+32. 
當(dāng)x=4時(shí),S有最大值.
即AB=CD=4米,BC=8米時(shí),花壇的面積最大
(2)解:將S=30代入S=-2x2+16x,解得x=3或x=5,
答:AB=CD=3米,BC=10米或AB=CD=5米,BC=6米時(shí)花壇面積是30平方米
【解析】根據(jù)知識(shí)的面積公式列出二次函數(shù)的解析式,再根據(jù)二次函數(shù)的性質(zhì)進(jìn)行求解即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】共有1500kg化工原料,由AB兩種機(jī)器人同時(shí)搬運(yùn),其中,A型機(jī)器人比B型機(jī)器每小時(shí)多搬運(yùn)30kg,A型機(jī)器人搬運(yùn)900kg所用時(shí)間與B型機(jī)器人搬運(yùn)600kg所用時(shí)間相等,問需要多長時(shí)間才能運(yùn)完?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了慶祝校園藝術(shù)節(jié),準(zhǔn)備購買一批盆花布置校園.已知1A種花和2B種花一共需13,2A種花和1B種花一共需11.

(1)1A種花和1B種花的售價(jià)各是多少元?

(2)學(xué)校準(zhǔn)備購進(jìn)這兩種盆花共100,并且A種盆花的數(shù)量不超過B種盆花數(shù)量的2,請(qǐng)求出A種盆花的數(shù)量最多是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 中, ,將 繞點(diǎn) 順時(shí)針旋轉(zhuǎn) ,得到 ,連接 ,交 于點(diǎn) ,則 的周長之和為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 中, ,AB=BC,A,B的坐標(biāo)分別為 ,將 繞點(diǎn)P旋轉(zhuǎn) 后得到 ,其中點(diǎn)B的對(duì)應(yīng)點(diǎn) 的坐標(biāo)為

(1)求出點(diǎn)C的坐標(biāo);
(2)求點(diǎn)P的坐標(biāo),并求出點(diǎn)C的對(duì)應(yīng)點(diǎn) 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 經(jīng)過 兩點(diǎn).

(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn) 為拋物線上一點(diǎn),若 ,求點(diǎn) 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對(duì)稱軸為x=﹣1,且過點(diǎn)(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),( ,y2)是拋物線上兩點(diǎn),則y1>y2 . 其中說法正確的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊(duì)在一次聯(lián)賽中共進(jìn)行了10場(chǎng)比賽,已知這10場(chǎng)比賽的平均得分為48分,且前9場(chǎng)比賽的得分依次為:575145,5144,4645,42,48

1)求第10場(chǎng)比賽的得分;

2)直接寫出這10場(chǎng)比賽的中位數(shù),眾數(shù)和方差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 軸交 、 兩點(diǎn),直線 與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.

(1)求拋物線及直線AC的函數(shù)表達(dá)式;
(2)若P點(diǎn)是線段AC上的一個(gè)動(dòng)點(diǎn),過P點(diǎn)作 軸的平行線交拋物線于F點(diǎn),求線段PF長度的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案