【題目】(10分)每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機(jī)器,現(xiàn)有甲、乙兩種型號的新機(jī)器可選,其中每臺的價格、工作量如下表.
甲型機(jī)器 | 乙型機(jī)器 | |
價格(萬元/臺) | a | b |
產(chǎn)量(噸/月) | 240 | 180 |
經(jīng)調(diào)查:購買一臺甲型機(jī)器比購買一臺乙型機(jī)器多2萬元,購買2臺甲型機(jī)器比購買3臺乙型機(jī)器少6萬元.
(1)求a、b的值;
(2)若該公司購買新機(jī)器的資金不能超過110萬元,請問該公司有幾種購買方案?
(3)在(2)的條件下,若公司要求每月的產(chǎn)量不低于2040噸,請你為該公司設(shè)計一種最省錢的購買方案.
【答案】(1);(2)有6種購買方案;(3)最省錢的購買方案為,應(yīng)選購甲型設(shè)備4臺,乙型設(shè)備6臺.
【解析】
試題(1)根據(jù)等量關(guān)系購買一臺甲型設(shè)備的費用—購買一臺乙型設(shè)備的費用=2萬元,購買3臺乙型設(shè)備的費用—購買2臺甲型設(shè)備的費用=6萬元,所以可列出方程組,解方程組即可;
(2)可設(shè)節(jié)省能源的新甲設(shè)備甲型設(shè)備x臺,乙型設(shè)備(10﹣x)臺,根據(jù)不等關(guān)系購買甲型設(shè)備的費用+購買乙型設(shè)備的費用≤110萬元,列出不等式,解不等式,再根據(jù)x取非負(fù)整數(shù),即可確定購買方案.
(3)根據(jù)不等關(guān)系甲型設(shè)備的生產(chǎn)量+乙型設(shè)備的的生產(chǎn)量≥2024,解不等式,再由x的值確定方案,然后進(jìn)行比較,作出選擇.
試題解析:解:(1)由題意得:,
∴;
(2)設(shè)購買節(jié)省能源的新設(shè)備甲型設(shè)備x臺,乙型設(shè)備(10﹣x)臺,
則:12x+10(10﹣x)≤110,
∴x≤5,
∵x取非負(fù)整數(shù)∴x=0,1,2,3,4,5,
∴有6種購買方案.
(3)由題意:240x+180(10﹣x)≥2040,
∴x≥4∴x為4或5.
當(dāng)x=4時,購買資金為:12×4+10×6=108(萬元),
當(dāng)x=5時,購買資金為:12×5+10×5=110(萬元),
∴最省錢的購買方案為,應(yīng)選購甲型設(shè)備4臺,乙型設(shè)備6臺.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,的平分線交于點,交的延長線于點
(1)如圖1,若,則 (直接寫出結(jié)果) .
(2)如圖2,若為的點,連接,求的值;
(3)如圖3,若連接,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=x-3與x軸,y軸分別交于點A和點B.
(1)求點A和點B的坐標(biāo);
(2)將直線l1向上平移6個單位后得到直線l2,求直線l2的函數(shù)解析式;
(3)設(shè)直線l2與x軸的交點為M,則△MAB的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC外角的平分線,已知∠BAC=∠ACD.
(1)求證:△ABC≌△CDA;
(2)若∠B=60°,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù).
(1)滿足何條件時,y隨x的增大而減。
(2)滿足何條件時,圖像經(jīng)過第一、二、四象限;
(3)滿足何條件時,它的圖像與y軸的交點在x軸的上方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間,甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲車出發(fā)至甲車到達(dá)C地的過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車出發(fā)2h時,兩車相遇;②乙車出發(fā)1.5h時,兩車相距170km;③乙車出發(fā)h時,兩車相遇;④甲車到達(dá)C地時,兩車相距40km.其中正確的是______(填寫所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=36°,∠C=72°,點D在AC上,BC=BD,DE∥BC交AB于點E,則圖中等腰三角形共有( )
A. 3個B. 4個C. 5個D. 6個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯誤的是( )
A. 函數(shù)有最小值
B. 對稱軸是直線x=
C. 當(dāng)x<,y隨x的增大而減小
D. 當(dāng)﹣1<x<2時,y>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-2x與直線y=kx+b相交于點A(a,2),并且直線y=kx+b經(jīng)過x軸上點B(2,0).
(1)求直線y=kx+b的解析式;
(2)求兩條直線與y軸圍成的三角形面積;
(3)直接寫出不等式(k+2)x+b≥0的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com