【題目】如圖,在△ABC中,∠A=36°,∠C=72°,點(diǎn)D在AC上,BC=BD,DE∥BC交AB于點(diǎn)E,則圖中等腰三角形共有( )
A. 3個(gè)B. 4個(gè)C. 5個(gè)D. 6個(gè)
【答案】C
【解析】
根據(jù)已知條件分別求出圖中三角形的內(nèi)角度數(shù),再根據(jù)等腰三角形的判定即可找出圖中等腰三角形.
①∵∠A=36°,∠C=72°,∴∠ABC=180°-(∠A+∠C)=72°,∴△ABC是等腰三角形;②∵DE∥BC,∴∠AED=∠ABC=∠C=∠ADE,∴△AED是等腰三角形;③∵BC=BD,∴△DBC是等腰三角形;∵△DBC是等腰三角形,④∴∠BDC=∠C=72°,∠DBC=180°-(∠BDC+∠C)=36°,∴∠EDB=36°,又∵∠EBD=∠ABC-∠DBC=36°,∴△EDB是等腰三角形,⑤∵∠EBD=∠A=36°,∴△ADB是等腰三角形.因此圖中等腰三角形共有5個(gè).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的面積為.點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位的速度向點(diǎn)運(yùn)動(dòng):點(diǎn)從點(diǎn)同時(shí)出發(fā),以每秒個(gè)單位的速度向點(diǎn)運(yùn)動(dòng).規(guī)定其中一個(gè)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng)。
(1)求線段的長;
(2)設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在五邊形ADBCE中,∠ADB=∠AEC=90°,∠DAB=∠EAC,M、N、O分別為AC、AB、BC的中點(diǎn).
(1)求證:△EMO≌△OND;
(2)若AB=AC,且∠BAC=40°,當(dāng)∠DAB等于多少時(shí),四邊形ADOE是菱形,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機(jī)器,現(xiàn)有甲、乙兩種型號的新機(jī)器可選,其中每臺的價(jià)格、工作量如下表.
甲型機(jī)器 | 乙型機(jī)器 | |
價(jià)格(萬元/臺) | a | b |
產(chǎn)量(噸/月) | 240 | 180 |
經(jīng)調(diào)查:購買一臺甲型機(jī)器比購買一臺乙型機(jī)器多2萬元,購買2臺甲型機(jī)器比購買3臺乙型機(jī)器少6萬元.
(1)求a、b的值;
(2)若該公司購買新機(jī)器的資金不能超過110萬元,請問該公司有幾種購買方案?
(3)在(2)的條件下,若公司要求每月的產(chǎn)量不低于2040噸,請你為該公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)了乘法公式后,老師向同學(xué)們提出了如下問題:
①將多項(xiàng)式x2+4x+3因式分解;
②求多項(xiàng)式x2+4x+3的最小值.
請你運(yùn)用上述的方法解決下列問題:
(1)將多項(xiàng)式x2+8x-20因式分解;
(2)求多項(xiàng)式x2+8x-20的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎(jiǎng)勵(lì)在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.
(1)求足球和籃球的單價(jià)各是多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需一次性購買足球和籃球共20個(gè),但要求購買足球和籃球的總費(fèi)用不超過1550元,學(xué)校最多可以購買多少個(gè)足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)建設(shè)“經(jīng)濟(jì)強(qiáng)、環(huán)境美、后勁足、群眾富”的實(shí)力城鎮(zhèn),聚力脫貧攻堅(jiān),全面完成脫貧任務(wù),某鄉(xiāng)鎮(zhèn)特制定一系列幫扶計(jì)劃,F(xiàn)決定將A、B兩種類型魚苗共320箱運(yùn)到某村養(yǎng)殖,其中A種魚苗比B種魚苗多80箱。
(1)求A種魚苗和B種魚苗各多少箱?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批魚苗全部運(yùn)往同一目的地。已知甲種貨車最多可裝A種魚苗40箱和B種魚苗10箱,乙種貨車最多可裝A種魚苗和B種魚苗各20箱。如果甲種貨車每輛需付運(yùn)輸費(fèi)4000元,乙種貨車每輛需付運(yùn)輸費(fèi)3600元,則安排甲、乙兩種貨車有哪幾種不同的方案?并說明選擇哪種方案可使運(yùn)輸費(fèi)最少?最少運(yùn)輸費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD中,∠ABC+∠ADC=180,連接AC,BD.
(1)如圖1,當(dāng)∠ACD=∠CAD=45時(shí),求∠CBD的度數(shù);
(2)如圖2,當(dāng)∠ACD=∠CAD=60時(shí),求證:AB+BC=BD;
(3)如圖3,在(2)的條件下,過點(diǎn)C作CK⊥BD于點(diǎn)K,在AB的延長線上取點(diǎn)F,使∠FCG=60,過點(diǎn)F作FH⊥BD于點(diǎn)H,BD=8,AB=5,GK=,求BH的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,在△ABC中,∠ACB=90°,BC=AC,點(diǎn)D在AB上,DE⊥AB交BC于E,點(diǎn)F是AE的中點(diǎn)
(1)寫出線段FD與線段FC的關(guān)系并證明;
(2)如圖2,將△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段FD與線段FC的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3)將△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)一周,如果BC=4,BE=2,直接寫出線段BF的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com