【題目】如圖,在平面直角坐標系xOy中,⊙A與y軸相切于點B(0, ),與x軸相交于M,N兩點,如果點M的坐標為( ,0),求點N的坐標
【答案】解:連接AB、AM、過A作AC⊥MN于C,設⊙A的半徑是R,
∵⊙A與y軸相切于B,
∴AB⊥y軸,
∵點B(0, ),與x軸相交于M、N兩點,點M的坐標為( ,0),
∴AB=AM=R,CM=R- ,AC= ,MN=2CM,
由勾股定理得:R2=(R- )2+( )2,
R=2.5,
∴CM=CN=2.5- =2,
∴ON= +2+2=4 ,
即N的坐標是(4 ,0).
【解析】要求點N的坐標,就需求出MN的長,因此過A作AC⊥MN于C,連接AB、AM、先由點B的坐標,就可求出AC的長,AB=OC=R,由點M的坐標就可求出OM的長,表示出MC的長,根據(jù)勾股定理求出R的長,即可求出MN的長,從而得出點N的坐標。
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和垂徑定理的相關知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如下表所示:
A | B | |
進價(萬元/套) | 1.5 | 1.2 |
售價(萬元/套) | 1.65 | 1.4 |
該商場計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元。
(毛利潤=(售價 - 進價)×銷售量)
(1)該商場計劃購進A,B兩種品牌的教學設備各多少套?
(2)通過市場調研,該商場決定在原計劃的基礎上,減少A種設備的購進數(shù)量,增加B種設備的購進數(shù)量,已知B種設備增加的數(shù)量是A種設備減少數(shù)量的1.5倍。若用于購進這兩種教學設備的總資金不超過69萬元,問A種設備購進數(shù)量至多減少多少套?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:線段AB=40cm.
(1)如圖①,點P沿線段AB自點A向點B以3厘米/秒運動,同時點Q線段BA自B點向點A以5厘米/秒運動,問經過幾秒后P、Q相遇?
(2)幾秒鐘后,P、Q相距16厘米?
(3)如圖②,AO=PO=8厘米,∠POB=40°,點P繞點O以20度/秒的速度順時針旋轉一周停止,同時點Q沿直線BA自B點向點A運動,假若P、Q兩點能相遇,求Q運動的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知圖甲是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均剪成四個小長方形,然后拼成如圖乙所示的一個大正方形.
(1)你認為圖乙中的陰影部分的正方形的邊長= ;
(2)請用兩種不同的方法求圖乙中陰影部分的面積:
方法一:
方法二:
(3)觀察圖乙,請你寫出下列代數(shù)式之間的等量關系:
(m+n)2、(m﹣n)2、mn
.
(4)根據(jù)(3)題中的等量關系,解決如下問題:若a+b=8,ab=7,求a﹣b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國明代珠算家程大位的名著《直指算法統(tǒng)宗》里有一道著名算題:“一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾丁?”意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,試問大、小和尚各多少人?設大和尚有x人,依題意列方程得( )
A. +3(100﹣x)=100 B. ﹣3(100﹣x)=100
C. 3x﹣=100 D. 3x+=100
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,A、B兩點在數(shù)軸上對應的數(shù)分別為﹣12和4.
(1)直接寫出A、B兩點之間的距離;
(2)若在數(shù)軸上存在一點P,使得AP=PB,求點P表示的數(shù).
(3)如圖2,現(xiàn)有動點P、Q,若點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右運動,同時點Q從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左運動,當點Q到達原點O后立即以每秒3個單位長度的速度沿數(shù)軸向右運動,求:當OP=4OQ時的運動時間t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,直線y=3x+3與x軸交于C點,與y軸交于A點,B點在x軸上,△OAB是等腰直角三角形.
(1)求過A、B、C三點的拋物線的解析式;
(2)若直線CD∥AB交拋物線于D點,求D點的坐標;
(3)若P點是拋物線上的動點,且在第一象限,那么△PAB是否有最大面積?若有,求出此時P點的坐標和△PAB的最大面積;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用直尺和圓規(guī)畫一個角等于已知角,是運用了“全等三角形的對應角相等”這一性質,其全等的依據(jù)是( )
A.SAS B.ASA C.AAS D.SSS
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com