【題目】某社區(qū)活動中心為中老年舞蹈隊統一隊服和道具,準備購買 10 套某種品牌的舞蹈鞋,每雙舞蹈鞋配 x(x≥2)個舞蹈扇,供舞蹈隊隊員使用.該社區(qū)附近 A,B 兩家超市都有這種品牌的舞蹈鞋和舞蹈扇出售,且每雙舞蹈鞋的標價均為 30 元,每個舞蹈扇的標價為 3 元,目前兩家超市同時在做促銷活動:
A 超市:所有商品均打九折(按標價的 90%)銷售;
B 超市:買一雙舞蹈鞋送 2 個舞蹈扇.
設在 A 超市購買舞蹈鞋和舞蹈扇的費用為(元),在 B 超市購買舞蹈鞋和舞蹈扇的費用為 (元).請解答下列問題:
(1)分別寫出 , 與 x 之間的關系式;
(2)若該活動中心只在一家超市購買,你認為在哪家超市購買更劃算?
科目:初中數學 來源: 題型:
【題目】如圖1,把一張長方形的紙片ABCD沿對角線BD折疊,點C落在E處,BE交AD于點F.
(1)求證:FB=FD;
(2)如圖2,連接AE,求證:AE∥BD;
(3)如圖3,延長BA,DE相交于點G,連接GF并延長交BD于點H,求證:GH垂直平分BD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某政府部門進行公務員招聘考試,其中三人中錄取一人,他們的成績如下:
人 | 測試成績 | ||
題目 | 甲 | 乙 | 丙 |
文化課知識 | 74 | 87 | 69 |
面試 | 58 | 74 | 70 |
平時表現 | 87 | 43 | 65 |
(1)按照平均成績甲、乙、丙誰應被錄。
(2)若按照文化課知識、面試、平時表現的成績已4:3:1的比例錄取,甲、乙、丙誰應被錄?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知n邊形的內角和θ=(n-2)×180°.
(1)甲同學說,θ能取360°;而乙同學說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數n.若不對,說明理由;
(2)若n邊形變?yōu)?/span>(n+x)邊形,發(fā)現內角和增加了360°,用列方程的方法確定x.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學期即將結束,為了表彰優(yōu)秀,班主任王老師用W元錢購買獎品。若以2支鋼筆和3本筆記本為一份獎品,則可買60份獎品;若以2支鋼筆和6本筆記本為一份獎品,則可以買40份獎品。設鋼筆單價為x元/支,筆記本單價為y元/本。
請用y的代數式表示x.
若用這W元錢全部購買筆記本,總共可以買幾本?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是正方形ABCD的對角線BD上一點,PE⊥BC于點E,PF⊥CD于點F,連接EF給出下列五個結論:①AP=EF;②△APD一定是等腰三角形;③AP⊥EF;④PD=EF.其中正確結論的番號是( )
A.①③④B.①②③C.①③D.①②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】來自中國、美國、立陶宛、加拿大的四國青年男籃巔峰爭霸賽于2014年3月25日-27日在我縣體育館舉行。小明來到體育館看球賽,進場時,發(fā)現門票還在家里,此時離比賽開始還有25分鐘,于是立即步行回家取票.同時,他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.如圖中線段AB、OB分別表示父、子倆送票、取票過程中,離體育館的路程S(米)與所用時間t(分鐘)之間的圖象,結合圖象解答下列問題(假設騎自行車和步行的速度始終保持不變):
(1)從圖中可知,小明家離體育館 米,父子倆在出發(fā)后 分鐘相遇.
(2)求出父親與小明相遇時距離體育館還有多遠?
(3)小明能否在比賽開始之前趕回體育館?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC內接于以AB為直徑的⊙O,過點C作⊙O的切線交BA的延長線于點D,且DA∶AB=1∶2.
(1)求∠CDB的度數;
(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】勾股定理是一個基本的幾何定理,早在我國西漢吋期算書《周髀算經》就有“勾三股四弦五”的記載.如果一個直角三角形三邊長都是正整數,這樣的直角三角形叫“整數直角三角形”;這三個整數叫做一組“勾股數”,如:3,4,5;5,12,13;7,24,25;8,15,17;9,40,41等等都是勾股數.
(1)小李在研究勾股數時發(fā)現,某些整數直角三角形的斜邊能寫成兩個整數的平方和,有一條直角邊能寫成這兩個整數的平方差.如3,4,5中,5=22+12,3=22﹣12;5,12,13中,13=32+22,5=32﹣22;請證明:m,n為正整數,且m>n,若有一個直角三角形斜邊長為m2+n2,有一條直角長為m2﹣n2,則該直角三角形一定為“整數直角三角形”;
(2)有一個直角三角形兩直角邊長分別為和,斜邊長4,且a和b均為正整數,用含b的代數式表示a,并求出a和b的值;
(3)若c1=a12+b12,c2=a22+b22,其中,a1、a2、b1、b2均為正整數.證明:存在一個整數直角三角形,其斜邊長為c1c2.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com