【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點(diǎn)C與A重合,點(diǎn)D落到D′處,折痕為EF.
(1)求證:△ABE≌△AD′F;
(2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結(jié)論.
【答案】見(jiàn)試題解析
【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)及折疊的性質(zhì)我們可以得到∠B=∠D′,AB=AD′,∠1=∠3,從而利用ASA判定△ABE≌△AD′F;
(2)四邊形AECF是菱形,我們可以運(yùn)用菱形的判定,有一組鄰邊相等的平行四邊形是菱形來(lái)進(jìn)行驗(yàn)證.
試題解析:(1)證明:由折疊可知:∠D=∠D′,CD=AD′,
∠C=∠D′AE.
∵四邊形ABCD是平行四邊形,
∴∠B=∠D,AB=CD,∠C=∠BA D.
∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,
即∠1+∠2=∠2+∠3.
∴∠1=∠3.
又∠B=∠D′,AB=AD′
∴△ABE≌△AD′F(ASA).
(2)解:四邊形AECF是菱形.
證明:由折疊可知:AE=EC,∠4=∠5.
∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∴∠5=∠6.
∴∠4=∠6.
∴AF=AE.
∵AE=EC,
∴AF=EC.
又∵AF∥EC,
∴四邊形AECF是平行四邊形.
又∵AF=AE,
∴平行四邊形AECF是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A.兩條射線所組成的圖形叫做角
B.一條直線可以看成一個(gè)平角
C.角的兩邊越長(zhǎng),角就越大
D.角的大小和它的度數(shù)大小是一致的
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c是三角形的三條邊,則|a+b﹣c|﹣|c﹣a﹣b|的化簡(jiǎn)結(jié)果為( 。
A. 0 B. 2a+2b C. 2c D. 2a+2b﹣2c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的三邊分別是a,b,c,試化簡(jiǎn)|a﹣b﹣c|+|b﹣c+a|﹣|c﹣b﹣a|值為( )
A. ﹣a+b+c.B. 3a+b﹣3c.C. ﹣a+b-c.D. ﹣3a﹣b+3c.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)將下列各數(shù)填在相應(yīng)的集合里.
﹣(﹣2.5),(﹣1)2,﹣|﹣2|,﹣22,0, ,﹣1.5;
正數(shù)集合{ …}
分?jǐn)?shù)集合{ …}
(2)把表示上面各數(shù)的點(diǎn)畫在數(shù)軸上,再按從小到大的順序,用“<“號(hào)把這些數(shù)連接起來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)反比例函數(shù)y= (x>0)的圖象上任意兩點(diǎn)A、B分別作x軸的垂線,垂足分別為C、D,連接OA、OB,設(shè)AC與OB的交點(diǎn)為E,△AOE與梯形ECDB的面積分別為S1、S2 , 比較它們的大小,可得( )
A.S1>S2
B.S1=S2
C.Sl<S2
D.大小關(guān)系不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方形ABCD中,AB=CD=10cm,BC=AD=8cm,動(dòng)點(diǎn)P以1cm/s的速度從A點(diǎn)出發(fā),沿A→B→C→D路線運(yùn)動(dòng)到點(diǎn)D停止,動(dòng)點(diǎn)Q以2cm/s的速度從D點(diǎn)出發(fā),沿D→C→B→A路線運(yùn)動(dòng)到點(diǎn)A停止,兩點(diǎn)同時(shí)出發(fā),6s后P、Q同時(shí)改變速度,點(diǎn)P的速度為2cm/s,點(diǎn)Q的速度為1cm/s, 當(dāng)點(diǎn)Q出發(fā)_____秒時(shí),點(diǎn)P與點(diǎn)Q在運(yùn)動(dòng)路線上相距的路程為26cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com