【題目】如圖,過反比例函數(shù)y= (x>0)的圖象上任意兩點A、B分別作x軸的垂線,垂足分別為C、D,連接OA、OB,設(shè)AC與OB的交點為E,△AOE與梯形ECDB的面積分別為S1、S2 , 比較它們的大小,可得(
A.S1>S2
B.S1=S2
C.Sl<S2
D.大小關(guān)系不能確定

【答案】B
【解析】解:由反比例函數(shù)系數(shù)k的幾何意義可得:SAOC=SBOD; 又SAOC=SAEO+SOEC , SBOD=SOEC+S梯形CEBD ,
所以SAOE=S梯形CEBD , 即S1=S2
故選B.
【考點精析】利用比例系數(shù)k的幾何意義對題目進行判斷即可得到答案,需要熟知幾何意義:表示反比例函數(shù)圖像上的點向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船C的求救信號.已知A、B兩船相距100(+1)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測點D,測得船C正好在觀測點D的南偏東75°方向上.

(1)分別求出A與C,A與D間的距離AC和AD(如果運算結(jié)果有根號,請保留根號).

(2)已知距離觀測點D處100海里范圍內(nèi)有暗礁,若巡邏船A沿直線AC去營救船C,在去營救的途中有無觸礁的危險?(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】積極響應(yīng)政府提出的“綠色發(fā)展·碳出行”號召,某社區(qū)決定購置一批共享單車,經(jīng)市場調(diào)查知,購買3量男式單車與4輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16000元.

(1)求男式單車和女式單車的單價;

(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點CA重合,點D落到D′處,折痕為EF

1)求證:△ABE≌△AD′F;

2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列詩句表述的是隨機事件的是(    )

A.離離原上草,一歲一枯榮B.危樓高百尺,手可摘星辰

C.會當(dāng)凌絕頂,一覽眾山小D.東邊日出西邊雨,道是無晴卻有晴

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b(a0)、二次函數(shù)y=ax2+bx和反比例函數(shù)y=(k0)在同一直角坐標(biāo)系中的圖象如圖所示,A點的坐標(biāo)為(-2,0),則下列結(jié)論中,正確的是( 。

A.b=2a+k B.a(chǎn)=b+k C.a(chǎn)>b>0 D.a(chǎn)>k>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC與BD交于點O,AC=6,BD=8.動點E從點B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運動,運動到點D停止.點F是點E關(guān)于BD的對稱點,EF交BD于點P,若BP=x,△OEF的面積為y,則y與x之間的函數(shù)圖象大致為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若m23=26 , 則m等于(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各題:
(1) +|1﹣ |﹣π0+
(2)( + )× ﹣(4 ﹣3 )÷2

查看答案和解析>>

同步練習(xí)冊答案