【題目】如圖,在以O為原點(diǎn)的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù) (x0)AB相交于點(diǎn)D,與BC相交于點(diǎn)E,若BD=3AD,且ODE的面積是9,k的值是( )

A.B. C.D.12

【答案】C

【解析】

設(shè)B點(diǎn)的坐標(biāo)為(a,b),由BD=3AD,得D,b),根據(jù)反比例函數(shù)定義求出關(guān)鍵點(diǎn)坐標(biāo),根據(jù)SODE=S矩形OCBA-SAOD-SOCE-SBDE= 9求出k.

∵四邊形OCBA是矩形,

AB=OCOA=BC,

設(shè)B點(diǎn)的坐標(biāo)為(a,b),

BD=3AD,

Db),

∵點(diǎn)D,E在反比例函數(shù)的圖象上,

=k,

Ea,),

SODE=S矩形OCBA-SAOD-SOCE-SBDE=ab- --b-=9

k=,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】①已知:△ABC中,BC=m,A=60°.問(wèn)滿足此條件的三角形有多少個(gè)?它們的最大面積存在嗎?若存在求出最大面積,并回答此時(shí)三角形的形狀;若不存在,請(qǐng)說(shuō)明理由.

②有一個(gè)正方形的養(yǎng)魚(yú)塘,四個(gè)角各有一棵大樹(shù).生產(chǎn)隊(duì)設(shè)想把魚(yú)塘擴(kuò)大,使它成為一個(gè)面積最大的正方形,而又不把樹(shù)挖掉,這一設(shè)想能否實(shí)現(xiàn)?若能,請(qǐng)你設(shè)計(jì)畫(huà)出圖形,并證明此時(shí)面積最大.若不能,請(qǐng)說(shuō)明理由.

③上問(wèn)題推廣,有一個(gè)正五邊形的養(yǎng)魚(yú)塘,五個(gè)角各有一棵樹(shù),要擴(kuò)大使它成為面積最大的正五邊形,而又不把樹(shù)挖掉,可以嗎?畫(huà)圖說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為等腰三角形,ABAC,ABBC,∠1=∠290°,∠1+∠BAC180°,點(diǎn)A、F、E、D在一條直線上,點(diǎn)DBC邊上,CD2BD.若△ABC的面積為40,求△ABE與△CDF的面積之和________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某園林專業(yè)戶計(jì)劃投資種植花卉及樹(shù)木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹(shù)木的利潤(rùn)y1與投資量x成正比例關(guān)系,種植花卉的利潤(rùn)y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).

投資量x(萬(wàn)元)

2

種植樹(shù)木利潤(rùn)y1(萬(wàn)元)

4

種植花卉利潤(rùn)y2(萬(wàn)元)

2

(1)分別求出利潤(rùn)y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;

(2)如果這位專業(yè)戶以8萬(wàn)元資金投入種植花卉和樹(shù)木,設(shè)他投入種植花卉金額m萬(wàn)元,種植花卉和樹(shù)木共獲利利潤(rùn)W萬(wàn)元,直接寫(xiě)出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤(rùn)?他能獲取的最大利潤(rùn)是多少?

(3)若該專業(yè)戶想獲利不低于22萬(wàn),在(2)的條件下,直接寫(xiě)出投資種植花卉的金額m的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為召開(kāi)球類運(yùn)動(dòng)會(huì),學(xué)校決定購(gòu)買(mǎi)一批籃球和足球,若購(gòu)買(mǎi)3個(gè)籃球和2個(gè)足球共需420元;購(gòu)買(mǎi)2個(gè)籃球和4個(gè)足球共需440元.

1)求籃球和足球的單價(jià);

2)根據(jù)實(shí)際需要,學(xué)校決定購(gòu)買(mǎi)籃球和足球共100個(gè),其中購(gòu)買(mǎi)籃球的數(shù)量不少于足球數(shù)量的,學(xué)?捎糜谫(gòu)買(mǎi)這批籃球和足球的資金最多為8000元.請(qǐng)問(wèn)有幾種購(gòu)買(mǎi)方案?

3)若購(gòu)買(mǎi)籃球個(gè),學(xué)校購(gòu)買(mǎi)這批籃球和足球的總費(fèi)用為元,在(2)的條件下,求哪種方案能使最小,并求出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是2,∠DAC的平分線交DC于點(diǎn)E,若點(diǎn)P、Q分別是ADAE上的動(dòng)點(diǎn),則DQ+PQ的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)x0)與y=ax+b的圖象交于點(diǎn)A(﹣1,n)和點(diǎn)B(﹣2,1).

(1)求k,a,b的值;

(2)直線x=m與x0)的圖象交于點(diǎn)P,與y=﹣x+1的圖象交于點(diǎn)Q,當(dāng)PAQ90°時(shí),直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲.乙兩同學(xué)騎自行車從A地沿同一條路到B,已知乙比甲先出發(fā)他們離出發(fā)地的距離Skm)和騎行時(shí)間th)之間的函數(shù)關(guān)系如圖1所示,給出下列說(shuō)法:①他們都騎行了20km;②乙在途中停留了0.5h;③甲.乙兩人同時(shí)到達(dá)目的地;④相遇后甲的速度小于乙的速度

根據(jù)圖象信息,以上說(shuō)法正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李大爺一年前買(mǎi)入了A、B兩種兔子共46只.目前,他所養(yǎng)的這兩種兔子數(shù)量相同,且A種兔子的數(shù)量比買(mǎi)入時(shí)減少了3只,B種兔子的數(shù)量比買(mǎi)入時(shí)減少a只.

(1)則一年前李大爺買(mǎi)入A種兔子________只,目前A、B兩種兔子共________只(用含a的代數(shù)式表示);

(2)若一年前買(mǎi)入的A種兔子數(shù)量多于B種兔子數(shù)量,則目前A、B兩種兔子共有多少只?

(3)李大爺目前準(zhǔn)備賣出30只兔子,已知賣A種兔子可獲利15/只,賣B種兔子可獲利6/只.如果賣出的A種兔子少于15只,且總共獲利不低于280元,那么他有哪幾種賣兔方案?哪種方案獲利最大?請(qǐng)求出最大獲利.

查看答案和解析>>

同步練習(xí)冊(cè)答案