【題目】李大爺一年前買入了A、B兩種兔子共46只.目前,他所養(yǎng)的這兩種兔子數(shù)量相同,且A種兔子的數(shù)量比買入時(shí)減少了3只,B種兔子的數(shù)量比買入時(shí)減少a只.
(1)則一年前李大爺買入A種兔子________只,目前A、B兩種兔子共________只(用含a的代數(shù)式表示);
(2)若一年前買入的A種兔子數(shù)量多于B種兔子數(shù)量,則目前A、B兩種兔子共有多少只?
(3)李大爺目前準(zhǔn)備賣出30只兔子,已知賣A種兔子可獲利15元/只,賣B種兔子可獲利6元/只.如果賣出的A種兔子少于15只,且總共獲利不低于280元,那么他有哪幾種賣兔方案?哪種方案獲利最大?請求出最大獲利.
【答案】(1) ,43-a;(2) 當(dāng)a=1時(shí),A、B兩種兔子有42只;(3) 方案一:賣出的A種兔子12只,B種兔子18只,可獲利12×15+18×6=288(元),方案二:賣出的A種兔子13只,B種兔子17只,可獲利13×15+17×6=297(元),方案三:賣出的A種兔子14只,B種兔子16只,可獲利14×15+16×6=306(元),方案三獲利最大,最大利潤為306元
【解析】
(1)利用目前他所養(yǎng)的這兩種兔子數(shù)量相同,得出等式求解即可;(2)利用一年前買入的兔子數(shù)量多于B種兔子數(shù)量,得出不等式求解即可;(3)利用總共獲利不低于280元,賣A種兔子可獲利15元/只,賣B種兔子可獲利6元/只,得出不等關(guān)系,進(jìn)而利用A種兔子的數(shù)量取值范圍得出即可.
(1) ;43﹣a
(2)解:由題意得出:> , 解得:a<3,
由題意得:a, , 應(yīng)為正整數(shù),
當(dāng)a=1時(shí),符合題意,即目前A、B兩種兔子有42只;
當(dāng)a=2時(shí), , 為分?jǐn)?shù),不合題意;
∴當(dāng)a=1時(shí),A、B兩種兔子有42只
(3)解:設(shè)李大爺賣出A種兔子y只,則賣出B種兔子(30﹣y)只,由題意得出: 15y+(30﹣y)×6≥280,
解得:y≥ ,
又∵賣出的A種兔子少于15只,即 ≤y<15,
∵y是整數(shù),
∴y=12,13,14,即李大爺有三種賣兔方案:
方案一:賣出的A種兔子12只,B種兔子18只,可獲利12×15+18×6=288(元),
方案二:賣出的A種兔子13只,B種兔子17只,可獲利13×15+17×6=297(元),
方案三:賣出的A種兔子14只,B種兔子16只,可獲利14×15+16×6=306(元),
顯然,方案三獲利最大,最大利潤為306元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+x﹣2與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C.
(1)求點(diǎn)A,點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)在拋物線的對稱軸上有一動(dòng)點(diǎn)P,求PB+PC的值最小時(shí)的點(diǎn)P的坐標(biāo);
(3)若點(diǎn)M是直線AC下方拋物線上一動(dòng)點(diǎn),求四邊形ABCM面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=4,將矩形ABCD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到矩形A′B′C′D′,則點(diǎn)B經(jīng)過的路徑與BA,AC′,C′B′所圍成封閉圖形的面積是多少?(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣8mx+16m﹣1(m>0)與x軸的交點(diǎn)分別為A(x1 , 0),B(x2 , 0).
(1)求證:拋物線總與x軸有兩個(gè)不同的交點(diǎn);
(2)若AB=2,求此拋物線的解析式.
(3)已知x軸上兩點(diǎn)C(2,0),D(5,0),若拋物線y=mx2﹣8mx+16m﹣1(m>0)與線段CD有交點(diǎn),請寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+(m﹣1)x+m與y軸交點(diǎn)坐標(biāo)是(0,3).
(1)求出m的值并畫出這條拋物線;
(2)求拋物線與x軸的交點(diǎn)和拋物線頂點(diǎn)的坐標(biāo);
(3)當(dāng)x取什么值時(shí),y的值隨x值的增大而減。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2)
(1)寫出點(diǎn)A、B的坐標(biāo):A( , )、B( , )
(2)將△ABC先向左平移1個(gè)單位長度,再向上平移2個(gè)單位長度,得到△A′B′C′,畫出△A′B′C′
(3)寫出三個(gè)頂點(diǎn)坐標(biāo)A′( 、 )、B′( 、 )、C′ ( 、 )
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(2,3),B(1,1),C(4,1),M(6,3).
(1)將△ABC平原得到△A1B1C1 , 其中點(diǎn)A,B,C的對應(yīng)點(diǎn)分別是A1 , B1 , C1 , 且點(diǎn)A1的坐標(biāo)是(3,6),在圖中畫出△A1B1C1 .
(2)將(1)中的△A1B1C1繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C2(其中點(diǎn)A2 , B2 , C2的對應(yīng)點(diǎn)分別是A1 , B1 , C1),并寫出點(diǎn)A2 , B2 , C2的坐標(biāo).
(3)(2)中的△A2B2C2能通過旋轉(zhuǎn)△ABC得到嗎?若能,請寫出旋轉(zhuǎn)的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB,AC的長是這個(gè)方程的兩個(gè)實(shí)數(shù)根.第三邊BC的長為5,當(dāng)△ABC是等腰三角形時(shí),求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com