【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、BC的坐標(biāo)分別為A(-1,3),B(-3,1),C(-1,1).請解答下列問題:

(1)畫出ABC關(guān)于y軸對稱的A1B1C1,并寫出B1的坐標(biāo);

(2)畫出A1B1C1繞點(diǎn)C1順時(shí)針旋轉(zhuǎn)90°后得到的A2B2C2

(3)求出點(diǎn)A1走過的路徑長.

【答案】(1)B1(3,1);(2)答案見解析;(3)π

【解析】

(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)AB、C關(guān)于y軸的對稱點(diǎn)A1、B1、C1的位置,然后順次連接并寫出B1的坐標(biāo)即可;

(2)根據(jù)旋轉(zhuǎn)的定義作出A1B1C1三頂點(diǎn)繞點(diǎn)C1順時(shí)針旋轉(zhuǎn)90°后得到的對應(yīng)點(diǎn),然后順次連接即可;

(3)根據(jù)弧長公式列式計(jì)算即可得出答案.

(1)A1B1C1如圖所示,B1(3,1);

(2)A2B2C2如圖所示;

(3)點(diǎn)A1走過的路徑長為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某數(shù)學(xué)活動小組要測量山坡上的電線桿PQ的高度他們采取的方法是:先在地面上的點(diǎn)A處測得桿頂端點(diǎn)P的仰角是45°再向前走到B點(diǎn),測得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°這時(shí)只需要測出AB的長度就能通過計(jì)算求出電線桿PQ的高度你同意他們的測量方案嗎?若同意畫出計(jì)算時(shí)的圖形,簡要寫出計(jì)算的思路,不用求出具體值;若不同意,提出你的測量方案并簡要寫出計(jì)算思路

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】抽屜里放有4只白襪子和2只黑襪子.

(1)從中任意摸出1只襪子,記下顏色后放回,攪勻,再摸出1只襪子,摸出的兩只襪子顏色相同的概率是多少.

(2)若第一次摸出不放回,摸出的兩只襪子顏色相同的概率是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果M個(gè)不同的正整數(shù),對其中的任意兩個(gè)數(shù),這兩個(gè)數(shù)的積能被這兩個(gè)數(shù)的和整除,則稱這組數(shù)為M個(gè)數(shù)的自然數(shù)組,如(3,6)為兩個(gè)數(shù)的自然數(shù)組,因?yàn)椋?/span>3×6)能被(3+6)整除;又如(15,30,60)為三個(gè)數(shù)的自然數(shù)組,因?yàn)椋?/span>15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…

(1)求證:2nnn﹣2)(n≥3,n為整數(shù))組成的數(shù)組是兩個(gè)數(shù)的自然數(shù)組;

(2)若(4a,5a,6a)是三個(gè)數(shù)的自然數(shù)組,求滿足條件的三位正整數(shù)a,并判斷(4a+5,5a+5,6a+5)是否為自然數(shù)組.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-2,0),OB=OA,AOB=120°.

(1)求經(jīng)過A、O、B三點(diǎn)的拋物線的解析式;

(2)(1)中拋物線的對稱軸上是否存在點(diǎn)C,使OBC的周長最小?若存在求出點(diǎn)C的坐標(biāo);若不存在,請說明理由;

(3)若點(diǎn)M為拋物線上一點(diǎn)點(diǎn)N為對稱軸上一點(diǎn),是否存在點(diǎn)MN使得A、O、M、N構(gòu)成的四邊形是平行四邊形?若存在求出點(diǎn)M的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線 y=ax2﹣5ax+c x 軸于點(diǎn) A,點(diǎn) A 的坐標(biāo)為(4,0).

(1)用含 a 的代數(shù)式表示 c

(2)當(dāng) a時(shí),求 x 為何值時(shí) y 取得最小值,并求出 y 的最小值.

(3)當(dāng) a時(shí),求 0≤x≤6 時(shí) y 的取值范圍.

(4)已知點(diǎn) B 的坐標(biāo)為(0,3),當(dāng)拋物線的頂點(diǎn)落在△AOB 外接圓內(nèi)部時(shí),直接寫出 a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公司要把3000噸貨物從M市運(yùn)到W市.(每日的運(yùn)輸量為固定值)

(1)從運(yùn)輸開始,每天運(yùn)輸?shù)呢浳飮崝?shù)y(單位:噸)與運(yùn)輸時(shí)間x(單位:天)之間有怎樣的函數(shù)關(guān)系式?

(2)因受到沿線道路改擴(kuò)建工程影響,實(shí)際每天的運(yùn)輸量比原計(jì)劃少20%,以致推遲1天完成運(yùn)輸任務(wù),求原計(jì)劃完成運(yùn)輸任務(wù)的天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線PQ同側(cè)有兩點(diǎn)M,N,點(diǎn)T在直線PQ上,若∠MTPNTQ,則稱點(diǎn)TM,N在直線PQ上的投射點(diǎn).

(1)如圖②,在RtABC中,∠B=60°,D為斜邊AB的中點(diǎn),EAC的中點(diǎn).求證:點(diǎn)DC,E在直線AB上的投射點(diǎn);

(2)如圖③,在正方形網(wǎng)格中,已知點(diǎn)AB,C三點(diǎn)均在格點(diǎn)上,請僅用沒有刻度的直尺在AC上畫出點(diǎn)P,在BC上畫出點(diǎn)Q,使A,PBC上的投射點(diǎn)Q滿足CQ=2BQ

(3)如圖④,在RtABC中,∠C=90°,ACBC,在AB,BC邊上是否分別存在點(diǎn)D,E,使點(diǎn)DE,CAB上的投射點(diǎn),點(diǎn)EA,DBC上的投射點(diǎn)?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案