【題目】數(shù)學(xué)課上,王老師畫(huà)好圖后并出示如下內(nèi)容:己知:的直徑,過(guò)的中點(diǎn),的切線(xiàn).

1)王老師要求同學(xué)們根據(jù)己知條件,在不添加線(xiàn)段與標(biāo)注字母的前提下,寫(xiě)出三個(gè)正確的結(jié)論,并選擇其中一個(gè)加以證明.

2)王老師說(shuō):如果添加條件,則能求出的直徑.請(qǐng)你寫(xiě)出求解過(guò)程,

【答案】1)正確的結(jié)論可以是:①AB=CB,②∠A=C,③DEBC;證明見(jiàn)解析;(2

【解析】

1)三個(gè)正確的結(jié)論:AB=CB,∠A=CDEBC;連接BD、OD,由圓周角定理得∠ADB=90°,則BDAC,由線(xiàn)段垂直平分線(xiàn)的性質(zhì)得AB=CB,由等腰三角形的性質(zhì)得∠A=C;證OD為△ABC的中位線(xiàn),則ODBC,由切線(xiàn)的性質(zhì)得出DEOD,得出DEBC;

(2) 由三角函數(shù)定義求出CE=2DE=2,由勾股定理得出CD=,則AD=CD=,由三角函數(shù)定義得,則BD=AD=,由勾股定理求出AB即可.

解:(1)三個(gè)正確的結(jié)論:AB=CB,∠A=CDEBC;選擇結(jié)論進(jìn)行證明.

連接BD、OD,如圖:


AB為⊙O的直徑,
∴∠ADB=90°,
BDAC
DAC的中點(diǎn),
AB=CB,
∴∠A=C
DAC的中點(diǎn),OAB的中點(diǎn),
OD為△ABC的中位線(xiàn),
OD//BC
DE為⊙O的切線(xiàn),
DEOD,
DEBC

2)由(1)知,在中,,,

由勾股定理得:,

,,,

的直徑為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A(yíng)、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;

(3)直接寫(xiě)出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,RtABC中,∠ACB=90°,∠B=30°,AC=1,點(diǎn)PAB上一點(diǎn),連接CP,將∠B沿CP折疊,使點(diǎn)B落在B'處.以下結(jié)論正確的有________

①當(dāng)AB'AC時(shí),AB'的長(zhǎng)為;

②當(dāng)點(diǎn)P位于AB中點(diǎn)時(shí),四邊形ACPB'為菱形;

③當(dāng)∠B'PA=30°時(shí),;

④當(dāng)CPAB時(shí),APAB'BP=123


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,矩形OABC的兩個(gè)頂點(diǎn)AC分別在x軸,y軸上,點(diǎn)B的坐標(biāo)是(8,2),點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),連接AP,以AP為一邊朝點(diǎn)B方向作正方形PADE,連接OP并延長(zhǎng)與DE交于點(diǎn)M,設(shè)

1)請(qǐng)用含a的代數(shù)式表示點(diǎn)P,E的坐標(biāo).

2)如圖2,連接OE,并把OE繞點(diǎn)E逆時(shí)針?lè)较蛐D(zhuǎn)90°得EF.若點(diǎn)F恰好落在x軸的正半軸上,求a的值.

3)如圖1,若點(diǎn)MDE的中點(diǎn),并且,點(diǎn)OP的延長(zhǎng)線(xiàn)上,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,以直線(xiàn)為對(duì)稱(chēng)軸的拋物線(xiàn)為常數(shù))經(jīng)過(guò)點(diǎn)AB

求該拋物線(xiàn)的解析式;

若點(diǎn)是該拋物線(xiàn)上的一動(dòng)點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為

①當(dāng)是以為直角邊的直角三角形時(shí),求的值;

②若滿(mǎn)足,直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】萬(wàn)州三中初中數(shù)學(xué)組深知人生最具好奇心和幻想力、創(chuàng)造力的時(shí)期是中學(xué)時(shí)代,經(jīng)研究,為我校每一個(gè)初中生推薦一本中學(xué)生素質(zhì)數(shù)育必讀書(shū)《數(shù)學(xué)的奧秘》,這本書(shū)就是專(zhuān)門(mén)為好奇的中學(xué)生準(zhǔn)備的.這本書(shū)不但給于我們知識(shí),解答生活中的疑惑,更重要的是培養(yǎng)我們細(xì)致觀(guān)察、認(rèn)真思考、勤于動(dòng)手的能力.經(jīng)過(guò)一學(xué)期的閱讀和學(xué)習(xí),為了了解學(xué)生閱讀效果,我們從初一、初二的學(xué)生中隨機(jī)各選20名,對(duì)《數(shù)學(xué)的奧秘》此書(shū)閱讀效果做測(cè)試(此次測(cè)試滿(mǎn)分:100分).通過(guò)測(cè)試,我們收集到20名學(xué)生得分的數(shù)據(jù)如下:

初一

96

100

89

95

62

75

93

86

86

93

95

95

88

94

95

68

92

80

78

90

初二

100

98

96

95

94

92

92

92

92

92

86

84

83

82

78

78

74

64

60

92

通過(guò)整理,兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)和方差如表:

年級(jí)

平均數(shù)

中位數(shù)

眾數(shù)

方差

初一

87.5

91

m

96.15

初二

86.2

n

92

113.06

某同學(xué)將初一學(xué)生得分按分?jǐn)?shù)段(,,),繪制成頻數(shù)分布直方圖,初二同學(xué)得分繪制成扇形統(tǒng)計(jì)圖,如圖(均不完整),初一學(xué)生得分頻數(shù)分布直方圖 初二學(xué)生得分扇形統(tǒng)計(jì)圖(注:x表示學(xué)生分?jǐn)?shù))

請(qǐng)完成下列問(wèn)題:

1)初一學(xué)生得分的眾數(shù)________;初二學(xué)生得分的中位數(shù)________;

2)補(bǔ)全頻數(shù)分布直方圖;扇形統(tǒng)計(jì)圖中,所對(duì)用的圓心角為________度;

3)經(jīng)過(guò)分析________學(xué)生得分相對(duì)穩(wěn)定(填初一初二);

4)你認(rèn)為哪個(gè)年級(jí)閱讀效果更好,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y1mx2+n,y2nx+mmn≠0),則兩個(gè)函數(shù)在同一坐標(biāo)系中的圖象可能為(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD⊙O的內(nèi)接四邊形,BC⊙O的直徑,OE⊥BCAB于點(diǎn)E,若BE=2AE,則∠ADC =_________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程的根可視為函數(shù)的圖象與函數(shù)的圖象交點(diǎn)的橫坐標(biāo),則方程的實(shí)根所在的范圍是( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案