【題目】20173月起,成都市中心城區(qū)居民用水實行以戶為單位的三級階梯收費辦法:

I級:居民每戶每月用水18噸以內含18噸每噸收水費a元;

第Ⅱ級:居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第Ⅰ級標準收費,超過部分每噸收水費b元;

第Ⅲ級:居民每戶每月用水超過25噸,未超過25噸的部分按照第I、Ⅱ級標準收費,超過部分每噸收水費c元.

設一戶居民月用水x噸,應繳水費為y元,yx之間的函數(shù)關系如圖所示

1)根據圖象直接作答:a   ,b   ;

2)求當x≥25yx之間的函數(shù)關系;

3)把上述水費階梯收費辦法稱為方案①,假設還存在方案②:居民每戶月用水一律按照每噸4元的標準繳費,請你根據居民每戶月用水量的大小設計出對居民繳費最實惠的方案.(寫出過程)

【答案】13;4;(2)當x≥25時,yx之間的函數(shù)關系式為y6x68;(3)當x34時,選擇繳費方案①更實惠;當x34時,選擇兩種繳費方案費用相同;當x34時,選擇繳費方案②更實惠

【解析】

1)根據單價=總價÷數(shù)量可求出a,b的值,此問得解;

2)觀察函數(shù)圖象,找出點的坐標,利用待定系數(shù)法即可求出當x≥25yx之間的函數(shù)關系;

3)由總價=單價×數(shù)量可找出選擇繳費方案②需交水費y(元)與用水數(shù)量x(噸)之間的函數(shù)關系式,分別找出當6x684x6x684x,6x684xx的取值范圍(x的值),選擇費用低的方案即可得出結論.

1a54÷183,

b=(8254÷2518)=4

故答案為:3;4

2)設當x≥25時,yx之間的函數(shù)關系式為ymx+nm≠0),

將(25,82),(35142)代入ymx+n,得:,

解得:,

∴當x≥25時,yx之間的函數(shù)關系式為y6x68

3)根據題意得:選擇繳費方案②需交水費y(元)與用水數(shù)量x(噸)之間的函數(shù)關系式為y4x

6x684x時,x34;

6x684x時,x34;

6x684x時,x34

∴當x34時,選擇繳費方案①更實惠;當x34時,選擇兩種繳費方案費用相同;當x34時,選擇繳費方案②更實惠.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果一元二次方程滿足a+b+c=0,我們稱這個方程為鳳凰方程.已知是鳳凰方程,且有兩個相等的實數(shù)根,則下列正確的是(  )

A.a=cB.a=bC.b=cD.a=b=c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D

1)求頂點D的坐標(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經過點C

①求拋物線的函數(shù)關系式;

②如圖2,點Ey軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點PM、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MFx軸于點F,若線段MFBF12,求點M、N的坐標;

③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為好玩三角形.若RtABC是好玩三角形,且∠C90°,BC≥AC,則sinB_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,F為對角線BD上的兩點,且∠DAE=∠BCF

求證:(1AECF;

2)四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,O過正方形ABCD的頂點A、D且與邊BC相切于點E,分別交AB、DC于點MN.動點P在⊙O或正方形ABCD的邊上以每秒一個單位的速度做連續(xù)勻速運動.設運動的時間為x,圓心OP點的距離為y,圖2記錄了一段時間里yx的函數(shù)關系,在這段時間里P點的運動路徑為( )

A. D點出發(fā),沿弧DA→AM→線段BM→線段BC

B. B點出發(fā),沿線段BC→線段CN→ND→DA

C. A點出發(fā),沿弧AM→線段BM→線段BC→線段CN

D. C點出發(fā),沿線段CN→ND→DA→線段AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,,,,點是邊上一點,過點分別作的垂線,過點的垂線,得到矩形和矩形,則這兩個矩形的面積之和的最大值是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校教學樓與實驗樓的水平間距米,在實驗樓頂部點測得教學樓頂部點的仰角是,底部點的俯角是,則教學樓的高度是____米(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線Ly=x+2x軸、y軸分別交于A、B兩點,在y軸上有一點N0,4),動點MA點以每秒1個單位的速度勻速沿x軸向左移動.

1)點A的坐標:_____;點B的坐標:_____;

2)求NOM的面積SM的移動時間t之間的函數(shù)關系式;

3)在y軸右邊,當t為何值時,NOMAOB,求出此時點M的坐標;

4)在(3)的條件下,若點G是線段ON上一點,連結MG,MGN沿MG折疊,點N恰好落在x軸上的點H處,求點G的坐標.

查看答案和解析>>

同步練習冊答案