【題目】如圖(1),在四邊形中,,,動點從點出發(fā),沿,運動至點停止.設(shè)點運動的路程為,的面積為,如果關(guān)于的函數(shù)圖象如圖(2)所示,則的面積是( )
A.6B.5C.4D.3
科目:初中數(shù)學 來源: 題型:
【題目】觀察與思考:閱讀下列材料,并解決后面的問題
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.
即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.
根據(jù)上述材料,完成下列各題.
(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A= ;AC= ;
(2)自從去年日本政府自主自導“釣魚島國有化”鬧劇以來,我國政府靈活應對,現(xiàn)如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結(jié)果精確到0.01,≈2.449)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩種機器人都被用來搬運化工原料,A型機器人比B型機器人每小時多搬運30kg,A型機器人搬運900kg與B型機器人搬運600kg所用時間相等,兩種機器人每小時分別搬運多少化工原料?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別是BC邊,CD邊的中點,AE、AF分別交BD于點G,H,設(shè)△AGH的面積為S1,平行四邊形ABCD的面積為S2,則S1:S2的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OC是∠AOB的平分線,點P在OC上且OP=4,∠AOB=60°,過點P的動直線DE交OA于D,交OB于E,那么=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,是的一條角平分線.點、、分別在、、上,且四邊形是正方形.
(1)求證:點在的平分線上;
(2)若,,且正方形的面積為4,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當△PMN周長取最小值時,則∠MPN的度數(shù)為( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.
(1)求證:四邊形OCAD是平行四邊形;
(2)填空:①當∠B= 時,四邊形OCAD是菱形;
②當∠B= 時,AD與相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把△ABD繞點A逆時針旋轉(zhuǎn)90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數(shù)量關(guān)系是 ,位置關(guān)系是 .
(2)探究證明:
在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結(jié)論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.
(3)拓展延伸:
如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點D作DF⊥AD交CE于點F,請直接寫出線段CF長度的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com