【題目】一圓的半徑是10cm,圓內的兩條平行弦長分別為12cm和16cm,則這兩條平行弦之間的距離為 .
【答案】14cm或2cm
【解析】解:有兩種情況:①如圖,當AB和CD在O的兩旁時,
過O作MN⊥AB于M,交CD于N,連接OB,OD,
∵AB∥CD,
∴MN⊥CD,
由垂徑定理得:BM= AB=8cm,DN= CD=6cm,
∵OB=OD=10cm,
由勾股定理得:OM= =6cm,
同理ON=8cm,
∴MN=8cm+6cm=14cm,
②當AB和CD在O的同旁時,MN=8cm﹣6cm=2cm,
故答案為:14cm或2cm.
過O作MN⊥AB于M,交CD于N,連接OB,OD,有兩種情況:①當AB和CD在O的兩旁時,根據(jù)垂徑定理求出BM,DN,根據(jù)勾股定理求出OM,ON,相加即可;②當AB和CD在O的同旁時,ON﹣OM即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點A、B分別是∠NOP、∠MOP平分線上的點,AB⊥OP于點E,BC⊥MN于點C,AD⊥MN于點D,下列結論錯誤的是( )
A. AD+BC=AB B. 與∠CBO互余的角有兩個
C. ∠AOB=90° D. 點O是CD的中點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).
(1)請直接寫出與點B關于坐標原點O的對稱點B1的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉90°.畫出對應的△A′B′C′圖形,直接寫出點A的對應點A′的坐標;
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=(x﹣1)2+n與x軸交于A,B兩點(A在B的左側),與y軸交于點C(0,﹣3),點D與點C關于拋物線的對稱軸對稱.
(1)求拋物線的解析式及點D的坐標;
(2)點P是拋物線對稱軸上的一動點,當△PAC的周長最小時,求出點P的坐標;
(3)點Q在x軸上,且∠ADQ=∠DAC,請直接寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知x1、x2是一元二次方程2x2﹣2x+1﹣3m=0的兩個實數(shù)根,且x1、x2滿足不等式x1x2+2(x1+x2)>0,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將長方形ABCD對折,得折痕PQ,展開后再沿MN翻折,使點C恰好落在折痕PQ上的點C′處,點D落在D′處,其中M是BC的中點且MN與折痕PQ交于F.連接AC′,BC′,則圖中共有等腰三角形的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)①畫出△ABC關于y軸對稱的△A1B1C1;
②畫出△ABC關于原點O成中心對稱的△A2B2C2;
(2)求△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生會為了解本校初中學生每天做作業(yè)所用時間情況,采用問卷的方式對一部分學生進行調查.在確定調查對象時,大家提出以下幾種方案:A.對各班班長進行調查;B.對某班的全體學生進行調查;C.從全校每班隨機抽取5名學生進行調查.在問卷調查時,每位被調查的學生都選擇了問卷中適合自己的一個時間,學生會將收集到的數(shù)據(jù)整理后繪制成如圖所示的條形統(tǒng)計圖.
(1)為了使收集到的數(shù)據(jù)具有代表性.學生會在確定調查對象時應選擇方案________ (填A,B或C);
(2)被調查的學生每天做作業(yè)所用時間的眾數(shù)為________h;
(3)根據(jù)以上統(tǒng)計結果,估計該校900名初中學生中每天做作業(yè)用1.5 h的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com