【題目】如圖,在四邊形ABCD中,AB∥DC,BC>AD,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F點(diǎn)以2cm/秒的速度在線段AB上由A向B勻速運(yùn)動(dòng),E點(diǎn)同時(shí)以1cm/秒的速度在線段BC上由B向C勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)試探究:△BEF可以為等腰三角形嗎?若能,求t的值;若不能,請說明理由.
【答案】(1)見解析;(2)DC=6.4cm;(3)當(dāng)△EFB為等腰三角形時(shí),t的值為秒或秒或秒.
【解析】
(1)根據(jù)三角形相似的判定定理即可得到結(jié)論;
(2)由△ACD∽△BAC,得,結(jié)合=8cm,即可求解;
(3)若△EFB為等腰三角形,可分如下三種情況:①當(dāng) BF=BE時(shí), ②當(dāng)EF=EB時(shí),③當(dāng)FB=FE時(shí),分別求出t的值,即可.
(1)∵CD∥AB,
∴∠BAC=∠DCA,
又AC⊥BC,∠ACB=90°,
∴∠D=∠ACB=90°,
∴△ACD∽△BAC;
(2)在Rt△ABC中,=8cm,
由(1)知,△ACD∽△BAC,
∴ ,
即: ,解得:DC=6.4cm;
(3)△BEF能為等腰三角形,理由如下:
由題意得:AF=2t,BE=t,
若△EFB為等腰三角形,可分如下三種情況:
①當(dāng) BF=BE時(shí),10﹣2t=t,解得:t=;
②當(dāng)EF=EB時(shí),如圖1,過點(diǎn)E作AB的垂線,垂足為G,
則,此時(shí)△BEG∽△BAC,
∴,即 ,
解得:t=;
③當(dāng)FB=FE時(shí),如圖2,過點(diǎn)F作AB的垂線,垂足為H,
則,此時(shí)△BFH∽△BAC,
∴,即 ,
解得:;
綜上所述:當(dāng)△EFB為等腰三角形時(shí),t的值為秒或秒或秒.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB,
(1)求拋物線的解析式;
(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國慶期間,某風(fēng)景區(qū)推出兩種旅游觀光活動(dòng)付費(fèi)方式:若人數(shù)不超過20人,人均繳費(fèi)500元;若人數(shù)超過20人,則每增加一位旅客,人均收費(fèi)降低10元,但是人均收費(fèi)不低于350元.現(xiàn)在某單位在國慶期間組織一批貢獻(xiàn)突出的職工到該景區(qū)旅游觀光,支付了12000元觀光費(fèi),請問:該單位一共組織了多少位職工參加旅游觀光活動(dòng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),對稱軸為,則下列結(jié)論中正確的是( )
A.
B. 當(dāng)時(shí),隨的增大而增大
C.
D. 是一元二次方程的一個(gè)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,邊長為1,∠A=60,順次連接菱形ABCD各邊中點(diǎn),可得四邊形A1B1C1D1;順次連結(jié)四邊形A1B1C1D1各邊中點(diǎn),可得四邊形A2B2C2D2;順次連結(jié)四邊形A2B2C2D2各邊中點(diǎn),可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去,…,則四邊形A2019B2019C2019D2019的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中,,P是斜邊AC上一個(gè)動(dòng)點(diǎn),以即為直徑作交BC于點(diǎn)D,與AC的另一個(gè)交點(diǎn)E,連接DE.
(1)當(dāng)時(shí),
①若,求的度數(shù);
②求證;
(2)當(dāng),時(shí),
①是含存在點(diǎn)P,使得是等腰三角形,若存在求出所有符合條件的CP的長;
②以D為端點(diǎn)過P作射線DH,作點(diǎn)O關(guān)于DE的對稱點(diǎn)Q恰好落在內(nèi),則CP的取值范圍為________.(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于、兩點(diǎn).是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過點(diǎn)作軸的平行線,交直線于點(diǎn),連接,若的面積為,則點(diǎn)的坐標(biāo)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小型水庫欄水壩的橫斷面是四邊形ABCD,DC∥AB,測得迎水坡的坡角α=30°,已知背水坡的坡比為1.2:1,壩頂部DC寬為2m,壩高為6m,則壩底AB的長為_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為數(shù)學(xué)實(shí)驗(yàn)“先行示范!保粩(shù)學(xué)活動(dòng)小組帶上高度為1.5m的測角儀BC,對建筑物AO進(jìn)行測量高度的綜合實(shí)踐活動(dòng),如圖,在BC處測得直立于地面的AO頂點(diǎn)A的仰角為30°,然后前進(jìn)40m至DE處,測得頂點(diǎn)A的仰角為75°.
(1)求∠CAE的度數(shù);
(2)求AE的長(結(jié)果保留根號(hào));
(3)求建筑物AO的高度(精確到個(gè)位,參考數(shù)據(jù):,).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com