【題目】已知:,.
()先化簡再求值:(其中,).
()若的結果與的取值無關,求的值.
【答案】(1)-22;(2).
【解析】
(1)首先把A=2a2+3ab2a1,B=3a2+ab1代入3A+2B,然后化簡后,再把a,b的值代入化簡的結果中求解即可;
(2)把11ab-6a-5變形為a(11b-6)-5,根據(jù)3A+2B的結果與a的取值無關求出b的值即可.
(1)∵A=2a2+3ab2a1,B=3a2+ab1
∴3A+2B=3(2a2+3ab2a1)+2(3a2+ab1)
=6a2+9ab6a3-6a2+2ab2
=11ab-6a-5;
當a=1,b=-1時,原式=-11-6-5=-22;
(2)11ab-6a-5=a(11b-6)-5
∵3A+2B的結果與a的取值無關,
∴11b-6=0,
解得,b=.
故當b=時,3A+2B的結果與a的取值無關.
科目:初中數(shù)學 來源: 題型:
【題目】小蘭:“小紅,你上周買的筆和筆記本的價格是多少啊?”小紅:“哦,…,我忘了!只記得先后買了兩次,第一次買了 5 支筆和 10 本筆記本共花了 42 元錢,第二次買了 10 文筆和 5 本筆記本共花了 30 元錢.”請根據(jù)小紅與小蘭的對話,求得小紅所買的筆和筆 記本的價格分別是( )
A.0.8 元/支,2.6 元/本B.0.8 元/支,3.6 元/本
C.1.2 元/支,2.6 元/本D.1.2 元/支,3.6 元/本
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】珍珍與環(huán)環(huán)兩人一起做游戲,游戲規(guī)則如下:每人從1,2,3,4,5,6,7,8中任意選擇一個數(shù)字,然后兩人各轉動一次如圖所示的轉盤(轉盤被分為面積相等的四個扇形),兩人轉出的數(shù)字之和等于誰事先選擇的數(shù),誰就獲勝;若兩人轉出的數(shù)字之和不等于她們各自選擇的數(shù),就再做一次上述游戲,直到決出勝負.若環(huán)環(huán)事先選擇的數(shù)是5,用列表法或畫樹狀圖的方法,求她獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知:在菱形ABCD中,E、F分別是BC,CD上的點,且CE=CF.
(1)求證:△ABE≌△ADF;
(2)過點C作CG∥EA交AF于點H,交AD于點G,若∠BAE=25°,∠BCD=130°,求∠AHC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場統(tǒng)計了每個營業(yè)員在某月的銷售額,繪制了如下的條形統(tǒng)計圖以及不完整的扇形統(tǒng)計圖:
解答下列問題:
(1)設營業(yè)員的月銷售額為x(單位:萬元),商場規(guī)定:當x<15時為不稱職,當15≤x<20時,為基本稱職,當20≤x<25為稱職,當x≥25時為優(yōu)秀.則扇形統(tǒng)計圖中的a=________,b=________.
(2)所有營業(yè)員月銷售額的中位數(shù)和眾數(shù)分別是多少?
(3)為了調動營業(yè)員的積極性,決定制定一個月銷售額獎勵標準,凡到達或超過這個標準的營業(yè)員將受到獎勵.如果要使得營業(yè)員的半數(shù)左右能獲獎,獎勵標準應定為多少萬元?并簡述其理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,長為60km的某段線路AB上有甲、乙兩車,分別從南站A和北站B同時出發(fā)相向而行,到達B、A后立刻返回到出發(fā)站停止,速度均為30km/h,設甲車,乙車距南站A的路程分別為y甲,y乙(km)行駛時間為t(h).
(1)圖2已畫出y甲與t的函數(shù)圖象,其中a= ,b= ,c= .
(2)分別寫出0≤t≤2及2<t≤4時,y乙與時間t之間的函數(shù)關系式.
(3)在圖2中補畫y乙與t之間的函數(shù)圖象,并觀察圖象得出在整個行駛過程中兩車相遇的次數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標;
(3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點 O 按如圖方式疊放在一起.
( 1 ) 如圖 1 , 若∠ BOD=35° , 則∠ AOC= ; 若∠AOC=135°, 則∠BOD= ;
(2)如圖2,若∠AOC=140°,則∠BOD= ;
(3)猜想∠AOC 與∠BOD 的大小關系,并結合圖1說明理由.
(4)三角尺 AOB 不動,將三角尺 COD 的 OD 邊與 OA 邊重合,然后繞點 O 按順時針或逆時針方向任意轉動一個角度,當∠A OD(0°<∠AOD<90°)等于多少度時,這兩塊三角尺各有一條邊互相垂直,直接寫出∠AOD 角度所有可能的值,不用說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB,垂足為D.下列說法不正確的是( 。
A.與∠1互余的角只有∠2B.∠A與∠B互余
C.∠1=∠BD.若∠A=2∠1,則∠B=30°
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com