【題目】為了解某校八年級學生每周平均課外閱讀時間的情況,隨機抽查了該校八年級部分學生,對其每周平均課外閱讀時間進行統(tǒng)計,根據(jù)統(tǒng)計數(shù)據(jù)繪制成如圖的兩幅尚不完整的統(tǒng)計圖:

1)本次共抽取了多少人?并請將圖1的條形圖補充完整;

2)這組數(shù)據(jù)的眾數(shù)是________;求出這組數(shù)據(jù)的平均數(shù);

3)若全校有1500,請你估計每周平均課外閱讀時間為3小時的學生多少人?

【答案】160人,圖見解析;(2)眾數(shù)是3,平均數(shù)是2.75;(3500.

【解析】

1)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得本次共抽取了學生多少人,閱讀3小時的學生有多少人,從而可以將條形統(tǒng)計圖補充完整;

2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得眾數(shù)和平均數(shù);

3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得課外閱讀時間為3小時的學生有多少人.

解:(1)由圖2知閱讀時間為2小時的扇形圖圓形角為90°,即閱讀時間為2小時的概率為,再根據(jù)圖1可知閱讀2小時的人數(shù)為15人,所以本次共抽取了15÷ =60名學生,閱讀3小時的學生有:60-10-15-10-5=20(名),

補充完整的條形統(tǒng)計圖如下圖所示;

2)由條形統(tǒng)計圖可得,

這組數(shù)據(jù)的眾數(shù)是3,

這組數(shù)據(jù)的平均數(shù)是:

31500× =500(人),

答:課外閱讀時間為3小時的學生有500人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板中的兩塊如圖所示的方式疊放在一起,直角頂點重合.

1)若時,求的度數(shù);

2)當平分時,求的度數(shù)(請寫出計算過程);

(3)猜想并直接寫出的數(shù)量關系(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:小丁在研究數(shù)學問題時遇到一個定義:對于排好順序的三個數(shù):x1,x2,x3,稱為數(shù)列x1x2,x3,計算,,,將這三個數(shù)的最小值稱為數(shù)列x1,x2x3的價值.例如,對于數(shù)列2-1,3,因為,,所以數(shù)列2-1,3的價值為.

小丁進一步發(fā)現(xiàn):當改變這三個數(shù)的順序時,所得到的數(shù)列都可以按照上述方法計算其相應的價值.如數(shù)列-1,2,3的價值為;數(shù)列3,-1,2的價值為1經(jīng)過研究,小丁發(fā)現(xiàn),對于“2-1,3”這三個數(shù),按照不同的排列順序得到的不同數(shù)列中,價值的最小值為.根據(jù)以上材料,回答下列問題:

(1)數(shù)列4,3,-2的價值為______.

(2)“4,3,-2”這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列,求這些數(shù)列的價值的最小值(請寫出過程并作答).

(3)3,-8a(a>1)這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列.若這些數(shù)列的價值的最小值為1,則a的值為_______ (直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:若A、BC為數(shù)軸上三點,若點CA的距離是點CB的距離2倍,我們就稱點C是(A,B)的好點

例如,如圖1,點A表示的數(shù)為-1,點B表示的數(shù)為2.表示1的點C到點A的距離是2,到點B的距離是1,那么點C是(A,B)的好點;

又如,表示0的點D到點A的距離是1,到點B的距離是2,那么點D不是A,B)的好點,但點D是(B,A)的好點.

知識運用:

如圖1,點B是(D,C)的好點嗎? (填是或不是);

如圖2A、B為數(shù)軸上兩點,點A所表示的數(shù)為-40,點B所表示的數(shù)為20.現(xiàn)有一只電子螞蟻P從點B出發(fā),以2個單位每秒的速度向左運動,到達點A停止.當t為何值時,P、AB中恰有一個點為其余兩點的好點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了鼓勵節(jié)約用電,某地用電標準規(guī)定:如果每戶每月用電不超過度,那么每度按元繳納;超過部分則按每度元繳納.

1)某戶月份用電度,共交電費元,求

2)若該戶月份的電費平均每度元,求月份共用電多少度?應交電費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從邊長為a的大正方形中剪掉一個邊長為b的小正方形,將陰影部分剪下,拼成右邊的矩形,由圖形①到圖形②的變化過程能夠驗證的一個等式是(  )

A. a(a+b)=a2+ab B. a2﹣b2=(a+b)(a﹣b)

C. (a+b)2=a2+2ab+b2 D. a(a﹣b)=a2﹣ab

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c過點A(0,﹣6)、B(﹣2,0),與x軸的另一交點為點C.

(1)求此拋物線的解析式;

(2)將直線AC向下平移m個單位,使平移后的直線與拋物線有且只有一個公共點M,求m的值及點M的坐標;

(3)拋物線上是否存在點P,使△PAC為直角三角形?若存在,請直接寫出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】釣魚島自古就是中國的!2017年5月18日,中國海警2305,2308,2166,33115艦船隊在中國的釣魚島領海內巡航,如圖,我軍以30km/h的速度在釣魚島A附近進行合法巡邏,當巡邏艦行駛到B處時,戰(zhàn)士發(fā)現(xiàn)A在他的東北方向,巡邏艦繼續(xù)向北航行40分鐘后到達點C,發(fā)現(xiàn)A在他的東偏北15°方向,求此時巡邏艦與釣魚島的距離(≈1.414,結果精確到0.01)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形紙片ABCD的邊長為,對角線相交于點O,第1次將紙片折疊,使點A與點O重合,折痕與AO交于點P1;設P1O的中點為O1,第2次將紙片折疊,使點A與點O1重合,折痕與AO交于點P2;設P2O1的中點為O2,第3次將紙片折疊,使點A與點O2重合,折痕與AO交于點P3;…;設Pn-1On-2的中點為On-1,第n次將紙片折疊,使點A與點On-1重合,折痕與AO交于點Pn(n>2),則APn的長為__________

查看答案和解析>>

同步練習冊答案