【題目】如圖:AD與⊙O相切于點D,AF經(jīng)過圓心與圓交于點E、F,連接DE、DF,且EF=6,AD=4.

(1)證明:AD2=AEAF;

(2)延長AD到點B,使DB=AD,直徑EF上有一動點C,連接CB交DF于點G,連接EG,設∠ACB=α,BG=x,EG=y.

①當α=900時,探索EG與BD的大小關系?并說明理由;

②當α=1200時,求y與x的關系式,并用x的代數(shù)式表示y.

【答案】(1)證明見解析;(2)①當α=90°時,EG>BD,理由見解析;②當α=120°時,y=

【解析】試題分析:(1)連接OD,由AD是⊙O的切線,根據(jù)切線的性質(zhì)可得ODAD,即∠ADE+EDO=90°,再由EF是直徑,根據(jù)圓周角定理的推論可得∠EDF=90°,即∠EDO+ODF=90°,即可得∠ADE=ODF,再由OD=OF,根據(jù)等腰三角形的性質(zhì)可得∠ODF=OFD,所以∠ADE=OFD,即可判定ADE∽△AFD,根據(jù)相似三角形的性質(zhì)可得 ,即AD2=AEAF;(2①當α=90°時,EGBD,理由如下:取EG的中點H,連接CH、DH、CD,在RtEDG、RtECG中,點HEG的中點,根據(jù)直角三角形斜邊的中線等于斜邊的一半可得CH=EH=GH=DH= EG,根據(jù)圓的定義即可判定點CE、D、G在以點H為圓心,EG為直徑的圓上,根據(jù)直徑是圓中最長的弦可得EGCD,在RtABC中,DB=AD,再由直角三角形斜邊的中線等于斜邊的一半可得CD= DB=AD=AB,即可得結論EGBD;②當α=120°時,將ADE繞著點D旋轉(zhuǎn)180°,得到BDP,連接GP,由(1AD2=AEAF可得16=AE(AE+6),解得AE=2AE=8(舍去),因ADE≌△BDP,根據(jù)全等三角形的性質(zhì)可得ED=DPAE=BP=2,A=DBP,再由∠EDF=90°可得DG垂直平分EP,根據(jù)線段垂直平分線的性質(zhì)可得GE=GP=y,因∠A+ABC=180°120°=60°所以∠DBP+ABC=60°,即∠GBP=60°;過點PPQBGRtBPQ中,∠GBP=60°,BP=2,可求得BQ=1PQ= ,所以GQ=BGBQ=x1RtGPQ, PQ=,GQ=x1,GP=y,由勾股定理可得PG2=GQ2+PQ2,y2=(x-1) 2+( ) 2 ,整理即可得y= .

試題解析:

1證明:連接OD

AD是⊙O的切線

ODAD,即∠ADE+EDO=90°

EF是直徑

∴∠EDF=90°,即∠EDO+ODF=90°

∴∠ADE=ODF

OD=OF

∴∠ODF=OFD

∴∠ADE=OFD

∴△ADE∽△AFD

,即

2①當時,EGBD

理由如下:取EG的中點H,連接CH、DHCD,

RtEDG、RtECG,HEG的中點

CH=EH=GH=DH=

∴點CE、D、G在以點H為圓心,EG為直徑的圓上

EGCD

RtABC, DB=AD

CD= DB=AD=

EGBD

②當

ADE繞著點D旋轉(zhuǎn)180°,得到BDP,連接GP

由(1得: ,解得AE=2AE=8(舍去)

∴△ADE≌△BDP

ED=DP,AE=BP=2,A=DBP

∵∠EDF=90°

DG垂直平分EP

GE=GP=

∵∠A+ABC=180°120°=60°

∴∠DBP+ABC=60°,即∠GBP=60°

過點PPQBG

RtBPQ中,∠GBP=60°,BP=2

BQ=1PQ=

GQ=BGBQ= 1

RtGPQ, PQ=,GQ= 1,GP=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABx軸交于點A1,0),與y軸交于點B0﹣2).

1)求直線AB的解析式;

2)若直線AB上的點C在第一象限,且SBOC=2,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是(0,4)、(﹣1,0),將此平行四邊形繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形ABOC′.

(1)若拋物線經(jīng)過點C、A、A,求此拋物線的解析式;

(2)點M時第一象限內(nèi)拋物線上的一動點,問:當點M在何處時,AMA的面積最大?最大面積是多少?并求出此時M的坐標;

(3)若P為拋物線上一動點,Nx軸上的一動點,點Q坐標為(1,0),當PN、B、Q構成平行四邊形時,求點P的坐標,當這個平行四邊形為矩形時,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】坐標平面上的點P2,﹣1)向上平移2個單位,再向左平移1個單位后,點P的坐標變?yōu)椋ā 。?/span>

A.2,1B.(﹣21C.11D.4,﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā),設慢車行駛的時間為x h,兩車之間的距離為y km,如圖所示的折線表示y與x之間的函數(shù)關系.根據(jù)圖象進行以下探究:

(1)甲、乙兩地之間的距離為_______km;

(2)請解釋圖中點B的實際意義;

(3)求慢車和快車的速度;

(4)求線段BC所表示的y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ABC的頂點分別為A-45),B﹣32),C4,-1).

作出△ABC關于x軸對稱的圖形△A1B1C1;

⑵寫出A1、B1、C1的坐標;

⑶若AC=10,求△ABCAC邊上的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結果精確到0.1米, ≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:0﹣7=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點A、E重合),在AE同側(cè)分別作正ABC和正CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結論:①AD=BE;②PQAE;③AP=BQ;④DE=DP;⑤AOB=60°.

恒成立的結論有 .(把你認為正確的序號都填上)

查看答案和解析>>

同步練習冊答案