【題目】坐標平面上的點P2,﹣1)向上平移2個單位,再向左平移1個單位后,點P的坐標變?yōu)椋ā 。?/span>

A.21B.(﹣2,1C.1,1D.4,﹣2

【答案】C

【解析】

根據(jù)橫坐標,右移加,左移減;縱坐標,上移加,下移減可得點P的坐標變?yōu)椋?/span>2112).

P2,1)向上平移2個單位,再向左平移1個單位后,點P的坐標變?yōu)椋?/span>21,12),

即(1,1).

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形OABC中,BC∥AO,∠AOC=90°,點A,B的坐標分別為(5,0), (2,6),點D為AB上一點,且BD=2AD,雙曲線y=(k>0)經(jīng)過點D,交BC于點E.

(1)求雙曲線的解析式;

(2)求四邊形ODBE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(x﹣1)(x+2)的結果是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是
A.2a+3a=5a2
B.a6÷a2a3
C.(-3a3)2=9a6
D.(a-3)2a2-9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出下列說法:

①在直角三角形ABC中,已知兩邊長為3和4,則第三邊長為5;

②三角形的三邊a、b、c滿足+=,則C=90;

③△ABC中,若A: B: C=1:5:6,則△ABC是直角三角形;

④△ABC中,若a:b:c=1:2: ,則這個三角形是直角三角形。

其中,錯誤的說法的個數(shù)為( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,過點A引射線AH,交邊CD于點H(點H與點D不重合),通過翻折,使點B落在射線AH上的點G處,折痕AE交BC于點E,延長EG 交CD于點F.如圖①,當點H與點C重合時,易證得FG=FD(不要求證明);如圖②,當點H為邊CD上任意一點時,求證:FG=FD.

【應用】在圖②中,已知AB=5,BE=3,則FD= ,△EFC的面積為 .(直接寫結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:AD與⊙O相切于點D,AF經(jīng)過圓心與圓交于點E、F,連接DE、DF,且EF=6,AD=4.

(1)證明:AD2=AEAF;

(2)延長AD到點B,使DB=AD,直徑EF上有一動點C,連接CB交DF于點G,連接EG,設∠ACB=α,BG=x,EG=y.

①當α=900時,探索EG與BD的大小關系?并說明理由;

②當α=1200時,求y與x的關系式,并用x的代數(shù)式表示y.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地一天早晨的氣溫是﹣5℃,中午上升了10℃,午夜又下降了8℃,則午夜的氣溫是(
A.﹣3℃
B.﹣5℃
C.5℃
D.﹣9℃

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在C′處,BC′AD于點E

1)試判斷BDE的形狀,并說明理由;

2)若AB=4,AD=8,求BDE的面積.

查看答案和解析>>

同步練習冊答案