【題目】如圖,在ABCD中,AE﹕EB=1﹕2,

(1)求△AEF與△CDF的周長的比;
(2)如果SAEF=5cm2 , 求SCDF

【答案】
(1)解:∵AE﹕EB=1﹕2,

∴AE﹕AB=1﹕3,

∵四邊形ABCD是平行四邊形,

∴AB=CD,AB∥CD,

∴△AEF∽△CDF

∴CAEF﹕CCDF=AE﹕CD=AE﹕AB=1﹕3,


(2)解:由(1)△AEF∽△CDF

∴SAEF﹕SCDF=(AE﹕CD)2,

即5﹕SCDF=(1﹕3)2

∴SCDF=45 cm2


【解析】(1)易證△AEF∽△CDF,由相似三角形的性質(zhì):周長之比等于相似比即可求出△AEF與△CDF的周長的比;(2)由(1)可知△AEF∽△CDF,由相似三角形的性質(zhì):面積之比等于相似比的平方即可求出問題答案.
【考點精析】利用相似三角形的判定與性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓錐的軸截面是邊長為6cm的正三角形ABC,P是母線AC的中點,則在圓錐的側(cè)面上從B點到P點的最短路線的長為( 。

A. B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20km越野賽中,甲乙兩選手的行程y(單位:km)隨時間 x(單位:h)變化的圖象如圖所示,

根據(jù)圖中提供的信息,有下列說法:①兩人相遇前,甲的速度小于乙的速度;②出發(fā)后1小時,兩人行程均為10km;③出發(fā)后1.5小時,甲的行程比乙多3km;④甲比乙先到達(dá)終點.其中正確的有____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)用4個全等的直角三角形拼成如圖所示弦圖”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,請你利用這個圖形解決下列問題:

(1)試說明a2+b2=c2;

(2)如果大正方形的面積是6,小正方形的面積是2,求(a+b)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(如圖1,等邊△ABC中,DAB邊上的點,以CD為一邊,向上作等邊△EDC,連接AE.

(1)求證:△DBC≌△EAC;

(2)求證:AE∥BC;

(3)如圖2, D在邊BA的延長線上,AB=6,AD=2,試求△ABC與△EAC面積的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)拼一拼,畫一畫:請你用4個長為a,寬為b的矩形拼成一個大正方形,并且正中間留下一個洞,這個洞恰好是一個小正方形。

2)用不同方法計算中間的小正方形的面積,聰明的你能發(fā)現(xiàn)什么?

3)當(dāng)拼成的這個大正方形邊長比中間小正方形邊長多3cm時,它的面積就多24cm2,求中間小正方形的邊長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2﹣(m+3)x+9的頂點C在x軸正半軸上,一次函數(shù)y=x+3與拋物線交于A、B兩點,與x、y軸分別交于D、E兩點.

(1)求m的值;
(2)求A、B兩點的坐標(biāo);
(3)當(dāng)﹣3<x<1時,在拋物線上是否存在一點P,使得△PAB的面積是△ABC面積的2倍?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寒假期間,一些同學(xué)將要到A,B,C,D四個地方參加冬令營活動,現(xiàn)從這些同學(xué)中隨機(jī)調(diào)查了一部分同學(xué).根據(jù)調(diào)查結(jié)果,繪制成了如下兩幅統(tǒng)計圖:

(1)扇形A的圓心角的度數(shù)為 , 若此次冬令營一共有320名學(xué)生參加,則前往C地的學(xué)生約有人,并將條形統(tǒng)計圖補(bǔ)充完整;
(2)若某姐弟兩人中只能有一人參加,姐弟倆決定用一個游戲來確定參加者:在4張形狀、大小完全相同的卡片上分別寫上﹣1,1,2,3四個整數(shù),先讓姐姐隨機(jī)地抽取一張,再由弟弟從余下的三張卡片中隨機(jī)地抽取一張.若抽取的兩張卡片上的數(shù)字之和小于3則姐姐參加,否則弟弟參加.用列表法或樹狀圖分析這種方法對姐弟倆是否公平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個三角形的兩條邊長分別是1cm2cm,一個內(nèi)角為40度.

(1)請你借助圖1畫出一個滿足題設(shè)條件的三角形;

(2)你是否還能畫出既滿足題設(shè)條件,又與(1)中所畫的三角形不全等的三角形?若能,請你在圖1的右邊用“尺規(guī)作圖”作出所有這樣的三角形;若不能,請說明理由;

(3)如果將題設(shè)條件改為“三角形的兩條邊長分別是3cm4cm,一個內(nèi)角為40°”,那么滿足這一條件,且彼此不全等的三角形共有幾個.

友情提醒:請在你畫的圖中標(biāo)出已知角的度數(shù)和已知邊的長度,“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.

查看答案和解析>>

同步練習(xí)冊答案