【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時間 x(單位:h)變化的圖象如圖所示,
根據圖中提供的信息,有下列說法:①兩人相遇前,甲的速度小于乙的速度;②出發(fā)后1小時,兩人行程均為10km;③出發(fā)后1.5小時,甲的行程比乙多3km;④甲比乙先到達終點.其中正確的有____個.
科目:初中數學 來源: 題型:
【題目】某校學生會為了解該校學生喜歡球類活動的情況,采取抽樣調查的辦法,從足球、乒乓球、籃球、排球等四個方面調查了若干名學生的興趣愛好,并將調查的結果繪制成右邊的兩幅不完整的統(tǒng)計圖(如圖(1),圖(2),要求每位同學只能選擇一種自己喜歡的球類;圖中用乒乓球、足球、排球、籃球代表喜歡這四種球類中的某一種球類的學生人數),請你根據圖中提供的信息,解答下列問題:
(1)在這次研究中,一共調查了多少名學生?
(2)喜歡排球的人數在扇形統(tǒng)計圖中所占的圓心角是多少度?
(3)補全頻數分布折線統(tǒng)計圖.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,△ABC中,∠BAC=90°,AB=AC,AE是過A點的一條直線,且B、C在AE的異側,BD⊥AE于D,CE⊥AE于E,求證:BD=DE+CE.
(2)若直線AE繞點A旋轉到圖2的位置時(BD<CE),其余條件不變,問BD與DE、CE的關系如何?請予以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,∠MAN=90°,射線AE在這個角的內部,點B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點F,BD⊥AE于點D.求證:△ABD≌△CAF;
(2)如圖2,點B、C分別在∠MAN的邊AM、AN上,點E、F都在∠MAN內部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,求△ACF與△BDE的面積之和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為增強公民節(jié)水意識,合理利用水資源,某市采用“階梯收費”,標準如下表:
用水量 | 單價 |
不超過6m3 的部分 | 2元/ m3 |
超過6m3不超過10m3的部分 | 4元/m3 |
超出10m3的部分 | 8元/m3 |
譬如:某用戶2月份用水9m3,則應繳水費:2×6+4×(9-6)=24(元)
(1)某用戶3月用水15 m3應繳水費多少元?
(2) 已知某用戶4月份繳水費20元,求該用戶4月份的用水量;
(3) 如果該用戶5、6月份共用水20m3 (6月份用水量超過5月份用水量),共交水費64元,則該戶居民5、6月份各用水多少立方米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列計算結果正確的是( )
A.6x6÷2x3=3x2
B.x2+x2=x4
C.﹣2x2y(x﹣y)=﹣2x3y+2x2y2
D.(﹣3xy2)3=﹣9x3y6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx(a≠0)的圖象經過點A(1,4),對稱軸是直線x=﹣,線段AD平行于x軸,交拋物線于點D.在y軸上取一點C(0,2),直線AC交拋物線于點B,連結OA,OB,OD,BD.
(1)求該二次函數的解析式;
(2)求點B坐標和坐標平面內使△EOD∽△AOB的點E的坐標;
(3)設點F是BD的中點,點P是線段DO上的動點,問PD為何值時,將△BPF沿邊PF翻折,使△BPF與△DPF重疊部分的面積是△BDP的面積的?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com