【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對(duì)稱(chēng)軸x=﹣1,給出下列結(jié)果①b2>4acabc>02a+b=0a+b+c>0a﹣b+c<0,則正確的結(jié)論的個(gè)數(shù)為( 。

A. 2 B. 3 C. 4 D. 5

【答案】B

【解析】

利用判別式的意義對(duì)①進(jìn)行判斷;拋物線開(kāi)口方向得到a>0,利用拋物線的對(duì)稱(chēng)軸得到b=2a>0,利用拋物線與y軸的交點(diǎn)位置得到c<0,則可對(duì)②進(jìn)行判斷;利用拋物線的對(duì)稱(chēng)軸方程可對(duì)③進(jìn)行判斷;利用x=1,y>0可對(duì)④進(jìn)行判斷;利用x=﹣1,y<0可對(duì)⑤進(jìn)行判斷.

解:∵拋物線與x軸有2個(gè)交點(diǎn),

b2﹣4ac>0,所以①正確;

∵拋物線開(kāi)口向上,

a>0,

∵拋物線的對(duì)稱(chēng)軸為直線

b=2a>0,即b﹣2a=0,所以③錯(cuò)誤;

∵拋物線與y軸的交點(diǎn)在x軸下方,

c<0,

abc<0,所以②錯(cuò)誤;

x=1時(shí),y>0,

a+b+c>0,所以④正確;

x=﹣1時(shí),y<0,

a﹣b+c<0,所以⑤正確.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①、圖②均是5×6的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn),小正方形的邊長(zhǎng)為1,點(diǎn)A、E、F均在格點(diǎn)上.在圖①、圖②中,只用無(wú)刻度的直尺,在給定的網(wǎng)格中按要求畫(huà)圖,所畫(huà)圖形的頂點(diǎn)均在格點(diǎn)上,不要求寫(xiě)出畫(huà)法.

1)在圖①中畫(huà)一個(gè)正方形ABCD,使其面積為5

2)在圖②中畫(huà)一個(gè)等腰△EFG,使EF為其底邊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司在甲、乙倉(cāng)庫(kù)共存放某種原料450噸,如果運(yùn)出甲倉(cāng)庫(kù)所存原料的60%,乙倉(cāng)庫(kù)所存原料的40%,那么乙倉(cāng)庫(kù)剩余的原料比甲倉(cāng)庫(kù)剩余的原料多30噸.

(1)求甲、乙兩倉(cāng)庫(kù)各存放原料多少?lài)崳?/span>

(2)現(xiàn)公司需將300噸原料運(yùn)往工廠,從甲、乙兩個(gè)倉(cāng)庫(kù)到工廠的運(yùn)價(jià)分別為120/噸和100/噸.經(jīng)協(xié)商,從甲倉(cāng)庫(kù)到工廠的運(yùn)價(jià)可優(yōu)惠a元噸(10≤a≤30),從乙倉(cāng)庫(kù)到工廠的運(yùn)價(jià)不變,設(shè)從甲倉(cāng)庫(kù)運(yùn)m噸原料到工廠,請(qǐng)求出總運(yùn)費(fèi)W關(guān)于m的函數(shù)解析式(不要求寫(xiě)出m的取值范圍);

(3)在(2)的條件下,請(qǐng)根據(jù)函數(shù)的性質(zhì)說(shuō)明:隨著m的增大,W的變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F分別在ADBC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:HE=HF;EC平分DCH;線段BF的取值范圍為3≤BF≤4;當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2.以上結(jié)論中,你認(rèn)為正確的有( 。﹤(gè).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 y2x+1 成正比例,當(dāng) x7 時(shí),y6,

1)寫(xiě)出 yx 之間的函數(shù)關(guān)系式;

2)當(dāng) y=-2 時(shí),求 x 的值;

3)若點(diǎn) P(-6,m+4)在該函數(shù)圖象上,求 m 的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為8,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿AB向點(diǎn)B運(yùn)動(dòng)(點(diǎn)P不與點(diǎn)A,B重合),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)以每秒2個(gè)單位的速度沿BC向點(diǎn)C運(yùn)動(dòng),點(diǎn)PQ同時(shí)出發(fā),當(dāng)點(diǎn)Q停止運(yùn)動(dòng),點(diǎn)P也隨之停止.連接AQ,交BD于點(diǎn)E,連接PE.設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為x秒,求當(dāng)x為何值時(shí),△PBE≌△QBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,小王在校園上的A處正面觀測(cè)一座教學(xué)樓墻上的大型標(biāo)牌,測(cè)得標(biāo)牌下端D處的仰角為30°,然后他正對(duì)大樓方向前進(jìn)5m到達(dá)B處,又測(cè)得該標(biāo)牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標(biāo)牌的上端與樓房的頂端平齊.求此標(biāo)牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,正方形ABCD的邊長(zhǎng)為4,把三角板的直角頂點(diǎn)放置BC中點(diǎn)E處,三角板繞點(diǎn)E旋轉(zhuǎn),三角板的兩邊分別交邊AB、CD于點(diǎn)G、F.

(1)求證:△GBE∽△GEF.

(2)設(shè)AG=x,GF=y,求Y關(guān)于X的函數(shù)表達(dá)式,并寫(xiě)出自變量取值范圍.

(3)如圖2,連接ACGF于點(diǎn)Q,交EF于點(diǎn)P.當(dāng)△AGQ與△CEP相似,求線段AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用圖形面積可以解釋代數(shù)恒等式的正確性,如圖1可以驗(yàn)證一個(gè)代數(shù)恒等式(a+b2=(ab2+4ab

1)如圖2,用若干張A,BC的卡片拼成一個(gè)長(zhǎng)方形面積為(2a+b)(a+b),那么需要A,B,C卡片各多少?gòu)垼?/span>

2)如果用1A,5B6C拼成一個(gè)長(zhǎng)方形,那么這個(gè)長(zhǎng)方形的邊長(zhǎng)分別是      

查看答案和解析>>

同步練習(xí)冊(cè)答案