【題目】利用圖形面積可以解釋代數(shù)恒等式的正確性,如圖1可以驗(yàn)證一個(gè)代數(shù)恒等式(a+b2=(ab2+4ab

1)如圖2,用若干張AB,C的卡片拼成一個(gè)長方形面積為(2a+b)(a+b),那么需要AB,C卡片各多少張?

2)如果用1A,5B,6C拼成一個(gè)長方形,那么這個(gè)長方形的邊長分別是      

【答案】(1)需要A卡片2張,B卡片3張,C卡片1張;(2)(a+2b);(a+3b).

【解析】

1)按照多項(xiàng)式乘法的運(yùn)算法則將(2a+b)(a+b)展開,則可得需要的A,B,C紙片的張數(shù);

2)先算出用1A,5B,6C拼成一個(gè)長方形的面積,再將其因式分解,則可得這個(gè)長方形的邊長.

1)∵(2a+b)(a+b)=2a2+3ab+b2

而圖片A,BC的面積分別為:a2,abb2

∴需要A卡片2張,B卡片3張,C卡片1張.

2)如果用1A,5B6C拼成一個(gè)長方形

則其面積為:a2+5ab+6b2;

a2+5ab+6b2=(a+2b)(a+3b

∴這個(gè)長方形的邊長分別是(a+2b)和(a+3b).

故答案為:(a+2b);(a+3b).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對稱軸x=﹣1,給出下列結(jié)果①b2>4acabc>02a+b=0a+b+c>0a﹣b+c<0,則正確的結(jié)論的個(gè)數(shù)為( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°, B=30°,以A為圓心,任意長為半徑畫弧分別交ABAC于點(diǎn)MN,又分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D

求證:(1)點(diǎn)DAB的中垂線上.

2)當(dāng)CD=2時(shí),求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電影《厲害了,我的國》震撼上演后,引起了大家的強(qiáng)烈共鳴,當(dāng)復(fù)興號一幕又一幕的奔馳在祖國廣袤的大地上,中國高鐵的車輪快速的滾出了嶄新中國的新畫卷.中國高鐵的飛速發(fā)展,使越來越多的人選擇高鐵出行.為了保證市民出行方便,某市的高鐵站出入口與地鐵站出入口進(jìn)行對接.已知某人沿著坡角為30°的樓梯ABA行至B,后沿BC路線上斜坡CD,坡角為30°,再行走一段距離DE,到達(dá)高鐵入口處.若入口處樓梯EF的坡角為45°,DE∥BC∥AF,AB=20米,CD=4米,那么EF的長度是多少米?(保留0.1米)(≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,3),點(diǎn)B和點(diǎn)D的坐標(biāo)分別為(m,0),(n,4),且m0,四邊形ABCD是矩形.

(1)如圖1,當(dāng)四邊形ABCD為正方形時(shí),求m,n的值;

(2)在圖2中,畫出矩形ABCD,簡要說明點(diǎn)C,D的位置是如何確定的,并直接用含m的代數(shù)式表示點(diǎn)C的坐標(biāo);

(3)探究:當(dāng)m為何值時(shí),矩形ABCD的對角線AC的長度最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD為矩形的四個(gè)頂點(diǎn),AB=16 cm,AD=6 cm,動點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P3 cm/s的速度向點(diǎn)B移動,一直到達(dá)B為止,點(diǎn)Q2 cm/s的速度向D移動,P、Q兩點(diǎn)從出發(fā)開始到__________秒時(shí),點(diǎn)P和點(diǎn)Q的距離是10 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(m,n)(m<0,

n>0),E點(diǎn)在邊BC上,F點(diǎn)在邊OA上.將矩形OABC沿EF折疊,點(diǎn)B正好與點(diǎn)O重合,雙曲線過點(diǎn)E.

(1) m=-8,n =4,直接寫出E、F的坐標(biāo);

(2) 若直線EF的解析式為,求k的值;

(3) 若雙曲線EF的中點(diǎn),直接寫出tanEFO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新園小區(qū)計(jì)劃在一塊長為20米,寬12米的矩形場地上修建三條互相垂直的長方形甬路(一條橫向、兩條縱向,且橫向、縱向的寬度比為3:2),其余部分種花草.若要使種花草的面積達(dá)到1442.則橫向的甬路寬為_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由矩形(非正方形)各內(nèi)角平分線所圍成的四邊形一定是(  )

A. 平行四邊形 B. 矩形 C. 菱形 D. 正方形

查看答案和解析>>

同步練習(xí)冊答案