【題目】△AOB中,∠AOB=90°,以頂點O為原點,分別以OA、OB所在直線為x軸、y軸建立平面直角坐標系(如圖),點A(a,0),B(0,b)滿足+|a-2|=0
(1)點A的坐標為 ;點B的坐標為 .
(2)如圖①,已知坐標軸上有兩動點D、E同時出發(fā),點D從A點出發(fā)沿x軸負方向以每秒1個單位長度的速度勻速移動,點E從O點出發(fā)以每秒2個單位長度的速度沿y軸正方向移動,點E到達B點時運動結束,AB的中點C的坐標是(1,2),設運動時間為t(t>0)秒,問:是否存在這樣的t,使S△OCD=S△OCE?若存在,請求出t的值:若不存在,請說明理由.
(3)如圖②,點F是線段AB上一點,滿足∠FOA=∠FAO,點G是第二象限中一點,連OG使得∠BOG=∠BOF,點P是線段OB上一動點,連AP交OF于點Q,當點P在線段OB上運動的過程中,的值是否會發(fā)生變化?若不變,請求出k的值;若變化,請說明理由.
【答案】(1)(2,0);(0,4);(2)當t=1時,S△OCD=S△OCE;(3).
【解析】
(1)根據非負數的性質分別求出a、b,得到答案;
(2)根據題意用t表示出OE、OD,根據三角形的面積公式列式計算即可;
(3)根據三角形的外角的性質得到∠OPA=∠ABP+∠BAP,證明OG∥AB,根據平行線的性質、三角形的外角性質計算即可.
(1)∵+|a-2|=0
∴b-2a=0,a-2=0,
解得,a=2,b=4,
則點A的坐標為(2,0),點B的坐標為(0,4),
故答案為:(2,0);(0,4);
(2)由題意得,AD=t,OE=2t,
則OD=2-t,
當S△OCD=S△OCE時,×2×(2-t)=×2t×1,
解得,t=1,
∴當t=1時,S△OCD=S△OCE;
(3)∠OPA是△APB的外角,
∴∠OPA=∠ABP+∠BAP,
∵∠AOB=90°,
∴∠BOF+∠FOA=90°,
∵∠BOG=∠BOF,∠FOA=∠FAO,
∴∠GOA+∠BAO=180°,
∴OG∥AB,
∴∠BOG=∠OBA,
∵∠BOG=∠BOF,
∴∠FOB=∠OBA,
∴∠OQA+∠BAP=∠OPA+∠BOF+∠BAP=∠OPA+∠OBA+∠BAP=2∠OPA,
∴.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC 中,點 E,F,G 分別在 BC,AC,AB 上,AE 與 BF 交于點 O,且點 O 在 CG 上,根據尺規(guī)作圖的痕跡,判斷下列說法不正確的是( )
A.AE,BF 是△ABC 的角平分線B.點 O 到△ABC 三邊的距離相等
C.CG 也是△ABC 的一條角平分線D.AO=BO=CO
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“綠水青山,就是金山銀山”.某旅游景區(qū)為了保護環(huán)境,需購買兩種型號的垃圾處理設備共10臺,已知每臺型設備日處理能力為12噸;每臺型設備日處理能力為15噸,購回的設備日處理能力不低于140噸.
(1)請你為該景區(qū)設計購買兩種設備的方案;
(2)已知每臺型設備價格為3萬元,每臺型設備價格為4.4萬元.廠家為了促銷產品,規(guī)定貨款不低于40萬元時,則按9折優(yōu)惠;問:采用(1)設計的哪種方案,使購買費用最少,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, ⊙O 的半徑是2,直線l與⊙O 相交于A、B 兩點,M、N 是⊙O 上的兩個動點,且在直線l的異側,若∠AMB=45°,則四邊形MANB 面積的最大值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】王大伯幾年前承包了甲、乙兩片荒山,各栽100棵楊梅樹,成活98%.現已掛果,經濟效益初步顯現,為了分析收成情況,他分別從兩山上隨意各采摘了4棵樹上的楊梅,每棵的產量如折線統計圖所示.
(1)分別計算甲、乙兩山樣本的平均數,并估算出甲、乙兩山楊梅的產量總和;
(2)試通過計算說明,哪個山上的楊梅產量較穩(wěn)定?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O 的半徑為1,直線CD 經過圓心O,交⊙O 于C、D 兩點,直徑AB⊥CD,點 M 是直線CD 上異于點C、O、D 的一個動點,AM 所在的直線交⊙O 于點N,點 P 是直線CD 上另一點,且PM=PN.
(1)當點 M 在⊙O 內部,如圖①,試判斷 PN 與⊙O 的關系,并寫出證明過程;
(2)當點 M 在⊙O 外部,如圖②,其他條件不變時,(1)的結論是否還成立? 請說明理由;
(3)當點 M 在⊙O 外部,如圖③,∠AMO=15°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在某市開展的環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長15米)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若設花園平行于墻的一邊長為x(m),花園的面積為y(m2).
(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達到200m2嗎?若能,求出此時x的值,若不能,說明理由;
(3)根據(1)中求得的函數關系式,判斷當x取何值時,花園的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個袋子中裝有除顏色外都相同的6個紅球和4個黃球,從袋子中任意摸出一個球,請問:
(1)“摸出的球是白球”是什么事件?
(2)“摸出的球是紅球”是什么事件?
(3)“摸出的球不是綠球”是什么事件?
(4)摸出哪種顏色球的可能性最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中A(a,0),B(b,0),D(0,d),以AB,AD為鄰邊做平行四邊形ABCD,其中a,b,d滿足.
(1)求出C的坐標,及平行四邊形ABCD的面積;
(2)如圖2,線段BC的中垂線交y軸與點E,F為AD的中點,試判斷∠EFB的大小,并說明理由;
(3)如圖3,過點C作CG⊥x軸與點G,K為線段DG上的一點,KH⊥CK交OG延長線與點H,且∠DKC=3∠KHG,請求出的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com