【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點,且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EF⊥AB,延長EF交AD的延長線于G,當(dāng)FG=1時,求AD的長.

【答案】(1)證明見解析,(2)2.

【解析】

試題分析:(1)通過證明△ODF與△OBE全等即可求得.

(2)由△ADB是等腰直角三角形,得出∠A=45°,因為EF⊥AB,得出∠G=45°,所以△ODG與△DFG都是等腰直角三角形,從而求得DG的長和EF=2,然后等腰直角三角形的性質(zhì)即可求得.

試題解析:(1)證明:∵四邊形ABCD是平行四邊形,

∴DC=AB,DC∥AB,

∴∠ODF=∠OBE,

在△ODF與△OBE中

∴△ODF≌△OBE(AAS)

∴BO=DO;

(2)解:∵BD⊥AD,

∴∠ADB=90°,

∵∠A=45°,

∴∠DBA=∠A=45°,

∵EF⊥AB,

∴∠G=∠A=45°,

∴△ODG是等腰直角三角形,

∵AB∥CD,EF⊥AB,

∴DF⊥OG,

∴OF=FG,△DFG是等腰直角三角形,

∵△ODF≌△OBE(AAS)

∴OE=OF,

∴GF=OF=OE,

即2FG=EF,

∵△DFG是等腰直角三角形,

∴DF=FG=1,∴DG==DO,

∴在等腰RT△ADB 中,DB=2DO=2=AD

∴AD=2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次主題為學(xué)會生存的中學(xué)生社會實踐活動中,春華同學(xué)為了鍛煉自己,他通過了解市場行情,以每件元的價格從批發(fā)市場購進(jìn)若干件印有北京奧運標(biāo)志的文化衫到自由市場去推銷,當(dāng)銷售完件之后,銷售金額達(dá)到元,余下的每件降價元,很快推銷完畢,此時銷售金額達(dá)到元,春華同學(xué)在這次活動中獲得純收入_______元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在線段AB的同側(cè)作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點E,F(xiàn),AE和BF交于點P.如圖,點點同學(xué)發(fā)現(xiàn)當(dāng)射線AM,BN交于點C;且∠ACB=60°時,有以下兩個結(jié)論:
①∠APB=120°;②AF+BE=AB.
那么,當(dāng)AM∥BN時:

(1)點點發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請求出∠APB的度數(shù),寫出AF,BE,AB長度之間的等量關(guān)系,并給予證明;
(2)設(shè)點Q為線段AE上一點,QB=5,若AF+BE=16,四邊形ABEF的面積為32 ,求AQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y= x和直線y=﹣x+3所夾銳角為α,則sinα的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),稱后的紀(jì)錄如下:

回答下列問題:

(1)這8筐白菜中最接近標(biāo)準(zhǔn)重量的這筐白菜重 ______  千克;

(2)這8筐白菜中,最重的與最輕的相差______ 千克;

(3)這8筐白菜一共重多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E,F是對角線AC上的兩點,且AECF.下列結(jié)論:①BEDF;BEDF;ABDE;④四邊形EBFD為平行四邊形;⑤SADESABE;AFCE.其中正確的個數(shù)是(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4月的某天小欣在“A超市買了雀巢巧克力趣多多小餅干10包,已知雀巢巧克力每包22元,趣多多小餅干每包2元,總共花費了80元.

(1)請求出小欣在這次采購中,雀巢巧克力趣多多小餅干各買了多少包?

(2)“期間,小欣發(fā)現(xiàn),A、B兩超市以同樣的價格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在A超市累計購物超過50元后,超過50元的部分打九折;在B超市累計購物超過100元后,超過100元的部分打八折.

①請問期間,若小欣購物金額超過100元,去哪家超市購物更劃算?

期間,小欣又到“B超市購買了一些雀巢巧克力,請問她至少購買多少包時,平均每包價格不超過20元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個圓柱體的側(cè)面展開圖為長方形ABCD,若AB=6.28cm,BC=18.84cm,則該圓柱體的體積是多少?(π3.14,結(jié)果精確到十分位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),B(b,0),C(-1,3),且+(4ab+11)2=0.

(1)求ab的值;

(2)在y軸的負(fù)半軸上存在一點M,使△COM的面積等于△ABC面積的一半,求出點M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案