【題目】如圖,點ABx軸的上方,∠AOB90°OA、OB分別與函數(shù)的圖象交于A、B兩點,以OAOB為鄰邊作矩形AOBC.當點Cy軸上時,分別過點A和點BAEx軸,BFx軸,垂足分別為E、F,則_______

【答案】4

【解析】

根據(jù)題意四邊形AOBC是矩形,得到OF=OE,因為OA、OB分別與函數(shù)y= 、y=- 的圖象交于A、B兩點,得到AE= , BF= ,即可解答

∵AE⊥x軸,BF⊥x軸,

∴AE∥y軸∥BF,

∵四邊形AOBC是矩形,

∴△AOC≌△BCO,

COFO= COOE,

∴OF=OE,

∵OA、OB分別與函數(shù)y= 、y=- 的圖象交于A、B兩點,

∴ BFOF=2, AEOE=8

∴AE= , BF=

故答案為4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】今年五一假期,某數(shù)學活動小組組織一次登山活動.他們從山腳下A點出發(fā)沿斜坡AB到達B點,再從B點沿斜坡BC到達山頂C點,路線如圖所示.斜坡AB的長為1000米,斜坡BC的長為200米,在C點測得B點的俯角為45°,已知A點海拔21米,C點海拔721.

(1)B點的海拔;

(2)求斜坡AB的坡角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】釣魚島自古以來就是中國的神圣領土,為宣誓主權,我海監(jiān)船編隊奉命在釣魚島附近海域進行維權活動,如圖,一艘海監(jiān)船以30海里/小時的速度向正北方向航行,海監(jiān)船在A處時,測得釣魚島C在該船的北偏東30°方向上,航行半小時后,該船到達點B處,發(fā)現(xiàn)此時釣魚島C與該船距離最短.

1)請在圖中作出該船在點B處的位置;

2)求釣魚島CB處距離(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對稱軸為直線x=﹣1的拋物線yx2+bx+cx軸相交于A、B兩點,其中點A的坐標為(﹣3,0).

1)求點B的坐標;

2)求二次函數(shù)的解析式;

3)已知C為拋物線與y軸的交點,設點Q是線段AC上的動點,作QDx軸交拋物線于點D,求線段QD長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)ykx+b(k≠0)的圖象與反比例函數(shù)y (n≠0)的圖象交于第二、四象限內(nèi)的AB兩點,與x軸交于點C,點B 坐標為(m,﹣1),ADx軸,且AD3,tanAOD

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOB的面積;

(3)Ex軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACB中,∠ACB=90°,在AB的同側分別作正ACD、正ABE和正BCF. 若四邊形CDEF的周長是24,面積是17,則AB的長是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(15),直線l1y=x,直線l2過原點且與x軸正半軸成60°夾角,在l1上有一動點M,在l2上有一動點N,連接AM、MN,則AM+MN的最小值為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某人在山坡坡腳C處測得一座建筑物定點A的仰角為60°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為45°.已知BC60m,山坡的坡比為12

1)求該建筑物的高度(即AB的長,結果保留根號);

2)求此人所在位置點P的鉛直高度(即PD的長,結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等邊三角形,四邊形ADEF是菱形,∠ADE=120°ADAB).

1)如圖①,當AD與邊BC相交,點D與點F在直線AC的兩側時,BDCF的數(shù)量關系為___________

2)將圖①中的菱形ADEF繞點A在平面內(nèi)逆時針旋轉αα180°).

Ⅰ.判斷(1)中的結論是否仍然成立,請利用圖②證明你的結論.

Ⅱ.若AC=4,AD=6,當ACE為直角三角形時,直接寫出CE的長度.

查看答案和解析>>

同步練習冊答案