試題分析:(1)通過證明三角形全等,由全等三角形的對應邊相等可以判斷以上三種設計方案都符合要求;
(2)在圖1中,先由正方形的性質得出∠BAE=∠ADH=90°,AB=AD,根據(jù)同角的余角相等得出∠ABE=∠DAH,再利用ASA證明△ABE≌△DAH,進而由全等三角形的對應邊相等即可得出BE=AH;
(3)先過點O作EF的垂線,分別交AB、DC的延長線于點G、H,則線段GH、EF為等長的小路.再進行證明:過點H作HN⊥AB交AB的延長線于點P,過點E作EP⊥BC交BC的延長線于點P,利用AAS證明△GHN≌△FEP,即可得出GH=EF.
解:(1)以上三種設計方案都符合要求;
(2)如圖1,∵四邊形ABCD是正方形,
∴∠BAE=∠ADH=90°,AB=AD,
又∵BE⊥AH,
∴∠ABE=∠DAH=90°﹣∠BAH.
在△ABE與△DAH中,
,
∴△ABE≌△DAH(ASA),
∴BE=AH;
(3)如圖,過點O作EF的垂線,分別交AB、DC的延長線于點G、H,則線段GH為所求小路.理由如下:
過點H作HN⊥AG于N,過點E作EP⊥BC交BC的延長線于點P,則∠GNH=∠FPE=90°.
∵AB∥CD,HN⊥AB,CB⊥AB,
∴NH=BC,
同理,EP=DC.
∵BC=DC,∴NH=EP.
∵GO⊥EF,∴∠MFO+∠FMO=90°,
∵∠BGM+∠GMB=90°,∠FMO=∠GMB,
∴∠BGM=∠MFO.
在△GHN與△FEP中,
,
∴△GHN≌△FEP(AAS),
∴GH=EF.
故答案為:ABE,DAH,BE,AH.
點評:本題考查了數(shù)學知識在實際生活中的應用,其中涉及到正方形的性質,余角的性質,全等三角形的判定與性質,難度不大.體現(xiàn)了數(shù)學知識來源于生活,并且為生活服務,能夠激發(fā)同學們學習數(shù)學的熱情.