【題目】如圖,以AB為直徑的⊙O交△ABC的邊AC于D、BC于E,過D作⊙O的切線交BC于F,交BA延長(zhǎng)線于G,且DF⊥BC.
(1)求證:BA=BC;
(2)若AG=2,cosB=,求DE的長(zhǎng).
【答案】(1)詳見解析;(2).
【解析】
(1)連結(jié)OD,如圖,根據(jù)切線的性質(zhì)得OD⊥DF,而DF⊥BC,根據(jù)平行線的判定得到OD∥BC,然后利用平行線的性質(zhì)和等量代換可得∠OAD=∠C,則根據(jù)等腰三角形的判定定理即可得到結(jié)論;
(2)作DH⊥AB于H,如圖,設(shè)⊙O的半徑為r,由平行線的性質(zhì)得cos∠DOG=cosB=,則在Rt△ODG中利用余弦可計(jì)算出r=3,再在Rt△ODH中利用余弦可求出OH=,則AH=,利用勾股定理可計(jì)算出AD,然后證明DE=AD即可.
(1)證明:連結(jié)OD,如圖,
∵DF為切線,
∴OD⊥DF,
∵DF⊥BC,
∴OD∥BC,
∴∠ODA=∠C,
而OA=OD,
∴∠ODA=∠OAD,
∴∠OAD=∠C,
∴BA=BC;
(2)作DH⊥AB于H,如圖,設(shè)⊙O的半徑為r,
∵OD∥BC,
∴∠B=∠DOG,
∴cos∠DOG=cosB=,
在Rt△ODG中,∵cos∠DOG=,即,
∴r=3,
在Rt△ODH中,∵cos∠DOH=,
∴OH=,
∴AH=3﹣=,
在Rt△ADH中,AD=,
∵∠DEC=∠C,
∴DE=DC,
而OA=OB,OD∥BC,
∴AD=CD,
∴DE=AD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某足球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)射門,將足球從離地面0.5m的A處正對(duì)球門踢出(點(diǎn)A在y軸上),足球的飛行高度y(單位:m)與飛行時(shí)間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,已知足球飛行0.8s時(shí),離地面的高度為3.5m.
(1)足球飛行的時(shí)間是多少時(shí),足球離地面最高?最大高度是多少?
(2)若足球飛行的水平距離x(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運(yùn)動(dòng)員正對(duì)球門射門時(shí),離球門的水平距離為28m,他能否將球直接射入球門?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝公司試銷一種成本為每件50元的恤衫.試銷中發(fā)現(xiàn),當(dāng)銷售單價(jià)是60元時(shí),售出400件;銷售單價(jià)每降低1元,多售出10件.設(shè)試銷中銷售單價(jià)(元)時(shí)的銷售量為(件).
(1)求與之間的函數(shù)關(guān)系式;
(2)設(shè)該公司獲得的總利潤(rùn)為元,求與之間的函數(shù)關(guān)系式;
(3)若要銷量不低于200件,且獲利至少5250元,則售價(jià)應(yīng)在何范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形紙片ABCD,AB=7,BC=4,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E、F,則EF=__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在線段BD上,在BD的同側(cè)作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC=∠AED=90°,CD與BE、AE分別交于點(diǎn)P、M.對(duì)于下列結(jié)論:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正確的是( 。
A. ①②B. ①②③C. ①②③④D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C處測(cè)得教學(xué)樓頂部D處的仰角為18°,教學(xué)樓底部B處的俯角為20°,教學(xué)樓的高BD=21m,求實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB(結(jié)果保留整數(shù)).(參考數(shù)據(jù):tan18°≈0.32,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC如圖放置,頂角的頂點(diǎn)C在直線m上,分別過點(diǎn)A、B作直線m的垂線,垂足分別為E、D,且AE=CD.
(1)求證:△AEC≌△CDB;
(2)若設(shè)△AEC的三邊長(zhǎng)分別為a、b、c,利用此圖證明勾股定理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一座山的一段斜坡BD的長(zhǎng)度為600米,且這段斜坡的坡度i=1:3(沿斜坡從B到D時(shí),其升高的高度與水平前進(jìn)的距離之比).已知在地面B處測(cè)得山頂A的仰角為30°,在斜坡D處測(cè)得山頂A的仰角為45°.求山頂A到地面BC的高度AC是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,EF是梯形ABCD的中位線,若△BEF的面積為4cm2,則梯形ABCD的面積為( 。
A.8cm2B.12cm2C.16cm2D.20cm2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com