【題目】閱讀下列解題過程:(-15)÷(-3)×6

(解析)原式=(-15)÷(-)×6 (第一步)

=(-15)÷(-25)(第二步)

=-(第三步)

解答問題:

①上面解答過程有兩個錯誤,第一處是第______步,錯誤的原因是______;第二處是第______步,錯誤的原因是______;

②請你正確解答本題.

【答案】,同級運算應(yīng)按照從左到右順序進行,,同號相除結(jié)果應(yīng)為正;②.

【解析】

觀察解題過程,找出錯誤的原因,寫出正確的解法即可.

①第一處是第二步,錯誤的原因是同級運算應(yīng)按照從左到右順序進行;第二處是第三步,錯誤的原因是同號相除結(jié)果應(yīng)為正;

②正確解答為:

原式=-15÷(- )×6=-15×(- )×6=

故答案為:①二,同級運算應(yīng)按照從左到右順序進行;二,同號相除結(jié)果應(yīng)為正

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求畫圖,并回答問題.

已知:直線AB,CD相交于點O,且OEAB

(1)過點O畫直線MNCD;

(2)若點F(1)中所畫直線MN上任意一點(O點除外),若AOC=35°,求EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】溫州蒼南馬站四季柚,聲名遠播,今年又是一個豐收年,某經(jīng)銷商為了打開銷路,對1 000個四季柚進行打包優(yōu)惠出售.打包方式及售價如圖所示.假設(shè)用這兩種打包方式恰好裝完全部柚子.

(1)若銷售a箱紙盒裝和a袋編織袋裝四季柚的收入共950元,求a的值;

(2)當(dāng)銷售總收入為7 280元時:

若這批四季柚全部售完,請問紙盒裝共包裝了多少箱,編織袋裝共包裝了多少袋.

若該經(jīng)銷商留下b(b>0)箱紙盒裝送人,其余柚子全部售出,求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直尺的寬度為2cm,A、B兩點在直尺的一條邊上,AB=8cm,C、D兩點在直尺的另一條邊上.若∠ACB=∠ADB=90°,則C、D兩點之間的距離為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)進行登山比賽,圖中表示甲、乙兩人沿相同的路線同時從山腳出發(fā),各自離山腳的距離隨時間變化的圖象,根據(jù)圖象中的有關(guān)數(shù)據(jù)回答下列問題:

(1)分別求出表示甲、乙兩同學(xué)登山過程中離山腳的距離h(千米)與時間t(時)的函數(shù)表達式;

(2)當(dāng)甲到達山頂時,乙行進到山路上的某點A處,求A點距山頂?shù)木嚯x;

(3)在(2)的條件下,設(shè)乙同學(xué)從A點繼續(xù)登山,甲同學(xué)到達山頂后游玩小時,沿原路下山,在點B處與乙同學(xué)相遇,此時點B與山頂距離為1千米,相遇后甲、乙各自沿原路下山和上山,求乙到達山頂時,甲離山腳的距離是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)y=(k﹣3)x+k,給出下列結(jié)論:

①此函數(shù)是一次函數(shù),

②無論k取什么值,函數(shù)圖象必經(jīng)過點(﹣1,3),

③若圖象經(jīng)過二、三、四象限,則k的取值范圍是k0,

④若函數(shù)圖象與x軸的交點始終在正半軸可得k3.其中正確的是( 。

A. ①② B. ①③ C. ②③ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一幅三角板擺放在一起.

(1)AOC的度數(shù)為________,射線OA 、OB、OC組成所有小于平角的和為________;

(2)反向延長射線OA D,OE為∠BOD的平分線,OF為∠COD的平分線,請按題意畫出圖形,并求出∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】放風(fēng)箏是大家喜愛的一種運動,星期天的上午小明在市政府廣場上放風(fēng)箏.如圖,他在A處不小心讓風(fēng)箏掛在了一棵樹梢上,風(fēng)箏固定在了D處,此時風(fēng)箏AD與水平線的夾角為30°,為了便于觀察,小明迅速向前邊移動,收線到達了離A處10米的B處,此時風(fēng)箏線BD與水平線的夾角為45°.已知點A,B,C在同一條水平直線上,請你求出小明此時所收回的風(fēng)箏線的長度是多少米?(風(fēng)箏線AD,BD均為線段, ≈1.414, ≈1.732,最后結(jié)果精確到1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,,把A點沿順時針方向旋轉(zhuǎn)得到,連接BDCE交于點F

求證:;

,,當(dāng)四邊形ADFC是菱形時,求BF的長.

查看答案和解析>>

同步練習(xí)冊答案