【題目】如圖,已知反比例函數(shù)和一次函數(shù)的圖象相交于第一象限內(nèi)的點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為1.過點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫出:當(dāng)>>0時,x的取值范圍.
【答案】(1)y=;y=x+1;(2)∠ACO=45°;(3)0<x<1.
【解析】
(1)根據(jù)△AOB的面積可求AB,得A點(diǎn)坐標(biāo).從而易求兩個函數(shù)的解析式;
(2)求出C點(diǎn)坐標(biāo),在△ABC中運(yùn)用三角函數(shù)可求∠ACO的度數(shù);
(3)觀察第一象限內(nèi)的圖形,反比例函數(shù)的圖象在一次函數(shù)的圖象的上面部分對應(yīng)的x的值即為取值范圍.
(1)∵△AOB的面積為1,并且點(diǎn)A在第一象限,
∴k=2,∴y=;
∵點(diǎn)A的橫坐標(biāo)為1,
∴A(1,2).
把A(1,2)代入y=ax+1得,a=1.
∴y=x+1.
(2)令y=0,0=x+1,
∴x=1,
∴C(1,0).
∴OC=1,BC=OB+OC=2.
∴AB=CB,
∴∠ACO=45°.
(3)由圖象可知,在第一象限,當(dāng)y>y>0時,0<x<1.
在第三象限,當(dāng)y>y>0時,1<x<0(舍去).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c過點(diǎn)A(3, 0)、點(diǎn)B(0, 3).點(diǎn)M(m, 0)在線段OA上(與點(diǎn)A、O不重合),過點(diǎn)M作x軸的垂線與線段AB交于點(diǎn)P,與拋物線交于點(diǎn)Q,聯(lián)結(jié)BQ.
(1)求拋物線表達(dá)式;
(2)聯(lián)結(jié)OP,當(dāng)∠BOP=∠PBQ時,求PQ的長度;
(3)當(dāng)△PBQ為等腰三角形時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商城銷售一種進(jìn)價為10元1件的飾品,經(jīng)調(diào)查發(fā)現(xiàn),該飾品的銷售量(件)與銷售單價(元)滿足函數(shù),設(shè)銷售這種飾品每天的利潤為(元).
(1)求與之間的函數(shù)表達(dá)式;
(2)當(dāng)銷售單價定為多少元時,該商城獲利最大?最大利潤為多少?
(3)在確保顧客得到優(yōu)惠的前提下,該商城還要通過銷售這種飾品每天獲利750元,該商城應(yīng)將銷售單價定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所在相同條件下做某作物種子發(fā)芽率的實(shí)驗(yàn),結(jié)果如下表所示:
種子個數(shù) | 200 | 300 | 500 | 700 | 800 | 900 | 1000 |
發(fā)芽種子個數(shù) | 187 | 282 | 435 | 624 | 718 | 814 | 901 |
發(fā)芽種子率 | 0.935 | 0.940 | 0.870 | 0.891 | 0.898 | 0.904 | 0.901 |
下面有四個推斷:
①種子個數(shù)是700時,發(fā)芽種子的個數(shù)是624,所以種子發(fā)芽的概率是0.891;
②隨著參加實(shí)驗(yàn)的種子數(shù)量的增加,發(fā)芽種子的頻率在0.9附近擺動,顯示出一定的穩(wěn)定性,可以估計種子發(fā)芽的概率約為0.9(精確到0.1);
③實(shí)驗(yàn)的種子個數(shù)最多的那次實(shí)驗(yàn)得到的發(fā)芽種子的頻率一定是種子發(fā)芽的概率;
④若用頻率估計種子發(fā)芽的概率約為0.9,則可以估計種子中大約有的種子不能發(fā)芽.
其中合理的是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,給出如下定義:若點(diǎn)在圖形上,點(diǎn)在圖形上,如果兩點(diǎn)間的距離有最小值,那么稱這個最小值為圖形的“近距離”,記為.特別地,當(dāng)圖形與圖形有公共點(diǎn)時,.
已知,,,
(1)點(diǎn),點(diǎn) ,點(diǎn),線段 ;
(2)⊙半徑為,
①當(dāng)時,求⊙與線段的“近距離”⊙,線段;
②若⊙,,則 .
(3)為軸上一點(diǎn),⊙的半徑為1,點(diǎn)關(guān)于軸的對稱點(diǎn)為點(diǎn),⊙與的“近距離”⊙,,請直接寫出圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克30元,規(guī)定每千克售價不低于成本,且不高于70元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價x(元/千克) | 40 | 50 | 60 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入成本);
(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少元時獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的弦,C為弦AB上一點(diǎn),設(shè)AC=m,BC=n(m>n),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過的面積為(m2﹣n2)π,則=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知C為線段AB上的一點(diǎn),△ACM和△CBN都是等邊三角形,AN和CM相交于F點(diǎn),BM和CN交于E點(diǎn).求證:△CEF是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)矩形地面,請觀察下列圖形,探究在第n個圖中,黑、白瓷磚分別各有多少塊( )
A.,B.,
C.,D.,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com