【題目】如圖,AB為⊙O的弦,C為弦AB上一點(diǎn),設(shè)AC=m,BC=n(m>n),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過(guò)的面積為(m2﹣n2)π,則=_____.
【答案】
【解析】
先確定線段BC過(guò)的面積:圓環(huán)的面積,作輔助圓和弦心距OD,根據(jù)已知面積列等式可得:S=πOB2-πOC2=(m2-n2)π,則OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得結(jié)論.
如圖,連接OB、OC,以O(shè)為圓心,OC為半徑畫(huà)圓,
則將弦AB繞圓心O旋轉(zhuǎn)一周,線段BC掃過(guò)的面積為圓環(huán)的面積,
即S=πOB2-πOC2=(m2-n2)π,
OB2-OC2=m2-n2,
∵AC=m,BC=n(m>n),
∴AM=m+n,
過(guò)O作OD⊥AB于D,
∴BD=AD=AB=,CD=AC-AD=m-=,
由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,
∴m2-n2=mn,
m2-mn-n2=0,
m=,
∵m>0,n>0,
∴m=,
∴,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙P的圓心P(m,n)在拋物線y=上.
(1)寫(xiě)出m與n之間的關(guān)系式;
(2)當(dāng)⊙P與兩坐標(biāo)軸都相切時(shí),求出⊙P的半徑;
(3)若⊙P的半徑是8,且它在x軸上截得的弦MN,滿足0≤MN≤2時(shí),求出m、n的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形的三邊分別為6cm、8cm、10cm,則這個(gè)三角形內(nèi)切圓的半徑是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1、圖2,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90°,
(1)在圖1中,AC與BD相等嗎?請(qǐng)說(shuō)明理由;
(2)若△COD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度后,到達(dá)圖2的位置,請(qǐng)問(wèn)AC與BD還相等嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線與反比例函數(shù)(k≠0)的圖象交于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)B是x軸正半軸上一點(diǎn),且AB⊥OA.
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)先在∠AOB的內(nèi)部求作點(diǎn)P,使點(diǎn)P到∠AOB的兩邊OA、OB的距離相等,且PA=PB;再寫(xiě)出點(diǎn)P的坐標(biāo).(不寫(xiě)作法,保留作圖痕跡,在圖上標(biāo)注清楚點(diǎn)P)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(―2,0),(0,1),⊙C的圓心坐標(biāo)為(0,―1),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),射線AD與y軸交于點(diǎn)E,則△ABE面積的最大值是( )
A. 4 B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題提出)
“不以規(guī)矩,不能成方圓.”——孟子;“圓,一中同長(zhǎng)也.”——墨經(jīng).
(1)圓,一中同長(zhǎng)也.”體現(xiàn)了古代先哲對(duì)“圓”定義的思考,請(qǐng)用現(xiàn)代文翻譯:____.
(初步思考)
圓規(guī)是我們初中幾何學(xué)習(xí)不可或缺的工具,用圓規(guī)不僅可以畫(huà)圓、畫(huà)弧,還可以畫(huà)弧與弧的交點(diǎn),利用這一特征可以構(gòu)造很多圖形,如:
(2)角平分線:如圖1,只用圓規(guī)在∠AOB中畫(huà)出一點(diǎn)P使得點(diǎn)P在∠AOB的角平分線上;對(duì)稱(chēng)點(diǎn):如圖2,只用圓規(guī)畫(huà)出點(diǎn)P關(guān)于直線l的對(duì)稱(chēng)點(diǎn)Q,并說(shuō)明理由.
(操作與應(yīng)用)
(3)已知點(diǎn)A、直線l.在圖3中只用圓規(guī)在直線l上畫(huà)出兩點(diǎn)B、C,使得A、B、C恰好是等腰三角形的3個(gè)頂點(diǎn),(畫(huà)出一個(gè)并寫(xiě)出相等線段即可):
已知點(diǎn)P、直線l.在圖4中只用圓規(guī)畫(huà)出一點(diǎn)Q,使得點(diǎn)P、Q所在的直線與直線l平行.(提示:平行四邊形對(duì)邊平行).
(4)已知點(diǎn)O、A、B,只用圓規(guī)畫(huà)出半徑為AB的⊙O與點(diǎn)A、B所在直線的交點(diǎn)C、D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC = 90°,BC = 1,AC =.
(1)以點(diǎn)B為旋轉(zhuǎn)中心,將△ABC沿逆時(shí)針?lè)较?/span>旋轉(zhuǎn)90°得到△A′BC′,請(qǐng)畫(huà)出變換后的圖形;
(2)求點(diǎn)A和點(diǎn)A′之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:y=x-3與x軸,y軸分別交于點(diǎn)A和點(diǎn)B.
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)將直線l1向上平移6個(gè)單位后得到直線l2,求直線l2的函數(shù)解析式;
(3)設(shè)直線l2與x軸的交點(diǎn)為M,則△MAB的面積是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com