0  445429  445437  445443  445447  445453  445455  445459  445465  445467  445473  445479  445483  445485  445489  445495  445497  445503  445507  445509  445513  445515  445519  445521  445523  445524  445525  445527  445528  445529  445531  445533  445537  445539  445543  445545  445549  445555  445557  445563  445567  445569  445573  445579  445585  445587  445593  445597  445599  445605  445609  445615  445623  447090 

6. 已知向量,則

    A.     B.     C.    D.

試題詳情

5. 已知正四棱柱中,中點(diǎn),則異面直線所成的角的余弦值為

    A.    B.       C.       D.

試題詳情

4.曲線在點(diǎn)處的切線方程為

    A.     B.      C.     D.

試題詳情

3. 已知中,, 則

    A.      B.      C.      D.

試題詳情

2. 設(shè)集合,則=

    A.      B.    C.  D.

試題詳情

1.

    A.       B.    C.    D.

試題詳情

2、從卷子來看,對(duì)同學(xué)答題內(nèi)容和審題的要求應(yīng)該說也是比較高的,比如第十小題,我估計(jì)很多同學(xué)在做這道題的時(shí)候,如果審地不清楚或者沒有看清楚的話,可能會(huì)誤認(rèn)為是求P、Q兩點(diǎn)之間的距離,如果這樣做,顯然這道題就會(huì)做不出來。我們一是要把題目審清。第十小題、第七小題都沒有給圖,我們需要根據(jù)已知條件,先畫出草圖,然后根據(jù)這個(gè)數(shù)據(jù)不斷修正這個(gè)草圖,使我們圖形最接近題目的要求,或者我們看到最舒服的角度。我們同學(xué)考察立體幾何的時(shí)候有這樣的情況,由于圖做不好,甚至有的同學(xué)不會(huì)做圖,影響了自己的答題,立體幾何有這樣的特征,我們要特別關(guān)注這一點(diǎn)。現(xiàn)在的高三同學(xué)或者今后的同學(xué)在立體幾何復(fù)習(xí)中更應(yīng)該注意了。對(duì)同學(xué)審題的要求更高一些,把題目看清。第八題也是,三角函數(shù)這道題,它是求絕對(duì)值的,這是同學(xué)們審題時(shí)要注意的。這段時(shí)間我有一個(gè)感受,它突出了學(xué)科特點(diǎn)。不僅僅是突出了數(shù)學(xué)學(xué)科的特點(diǎn),因?yàn)閿?shù)學(xué)本身里有很多學(xué)科,幾何的特點(diǎn),代數(shù)的特點(diǎn),幾何里剛才我們談到了立體幾何。解析幾何的學(xué)科特點(diǎn)應(yīng)該講是非常鮮明的,我們要用代數(shù)方法去研究數(shù)學(xué)問題。怎么用代數(shù)方法去研究數(shù)學(xué)問題呢?需要同學(xué)們通過讀題、審題時(shí)緊緊抓住幾何對(duì)象,只有把幾何特征抓住、抓準(zhǔn),才有可能進(jìn)行準(zhǔn)確的代數(shù)化,用向量代數(shù)形式解決幾何問題。這是這個(gè)學(xué)科對(duì)我們考生的一個(gè)基本要求,同學(xué)們?cè)趶?fù)習(xí)的時(shí)候也應(yīng)該以此作為復(fù)習(xí)的目標(biāo)。只有這樣,我們才有可能完成立體幾何的一些解題的目的。比如說選擇題第四小題,求雙曲線的離心率,那么離心率是多少,答案來看是四個(gè)當(dāng)中的一個(gè),雙曲線的形狀已經(jīng)確定,哪個(gè)條件來決定這個(gè)雙曲線的形狀是確定的?這是第一句話,也就是說,是雙曲線的漸近線,這是外圍線,這條直線。用代數(shù)方法解決拋物線和直線的相接問題,最后得出關(guān)于X的第二次方程,這樣可以利用代數(shù)的方法,方程得出為零,得出雙曲線和直線的關(guān)系,確定離心率值的問題。

 再比如說第十二題,選擇題的最后一題,這道題難度其實(shí)并不是很大,只要同學(xué)們注意到了平面解析幾何的特征,什么叫平面解析幾何呢?怎么用代數(shù)方法解決問題呢?要把題目中給你的代數(shù)條件或幾何條件搞清楚,把給的幾何元素的代數(shù)形式寫出來,這兩方面做到了,做好了,作題并不是很困難。首先根據(jù)題目中所給的這樣一些代數(shù)東西,把幾何特征找到,比如交點(diǎn)坐標(biāo)找出來,右邊方程代數(shù)化。它又接著說有一個(gè)A點(diǎn)在右準(zhǔn)線上,線段AF和橢圓交于點(diǎn)B,這時(shí)候好像同學(xué)們有一點(diǎn)疑惑,和B點(diǎn),連接以后和橢圓交于點(diǎn)B,在什么位置上?在延長(zhǎng)線上和橢圓相交,還是和橢圓直接相交。后面告訴我們了,向量FA等于三倍的向量FB。這涉及到幾何和向量交匯的問題。通過這樣的題目,B點(diǎn)就在F之間,焦點(diǎn)到準(zhǔn)線距離是1,求AF的長(zhǎng)度怎么來求?有右準(zhǔn)線,有焦點(diǎn),我們可以考慮定義,這樣求B點(diǎn)到準(zhǔn)線距離可以利用BF向量和AF向量的比例關(guān)系,因?yàn)榈紽點(diǎn)的準(zhǔn)線距離知道,也就知道B點(diǎn)到準(zhǔn)線的距離,點(diǎn)B到右交點(diǎn)的距離就出來了。盡管是選擇題的最后一題,按照一般過去的經(jīng)驗(yàn)來說,這道題有一定難度,但如果我們能夠抓住解析幾何的特征,充分利用解析幾何的思維方法和思維特征,用幾何的角度去分析它的代數(shù)形式,比如方程,它的坐標(biāo),用代數(shù)研究分析幾何特征,用幾何的東西考慮它要代數(shù)化。這門學(xué)科方法性特別強(qiáng),我們?cè)趶?fù)習(xí)、答卷的時(shí)候要充分注意到這樣一個(gè)問題,包括最后那個(gè)大題二十一題。

 我們要想的是,半徑的變化范圍是由誰來決定的,顯然從題目中告訴我們,可以看到,它是由要求拋物線和圓交于四點(diǎn),也有可能不交于四點(diǎn),比如交于兩點(diǎn)甚至沒有交點(diǎn)。交于四點(diǎn)的幾何特征是什么?是解決這個(gè)題的關(guān)鍵。第二問也是這樣,由于相交R有一個(gè)范圍面積,A、B、C、D的面積在變化,求最大時(shí)候交點(diǎn)P點(diǎn)的坐標(biāo)。從代數(shù)角度怎么考慮這個(gè)問題?這個(gè)時(shí)候我們可以考慮,面積在發(fā)生變化,一定是由某些量或者某一個(gè)量的變化引起它的變化,換句話說,面積是某一個(gè)量的函數(shù),這樣你就會(huì)把一個(gè)幾何最大最小的問題慢慢過渡到函數(shù)問題上來。既然要求P點(diǎn)的坐標(biāo),P點(diǎn)在X軸上,根據(jù)圖形的對(duì)稱性,P點(diǎn)的橫坐標(biāo)是不是就是四邊形A、B、C、D面積的自變量,由于P點(diǎn)坐標(biāo)的變化導(dǎo)致面積的變化?

 如果我們考慮到這一點(diǎn),其實(shí)第二問的思路也就大致出來了。從這段時(shí)期來看,考察我們對(duì)學(xué)科特點(diǎn)的認(rèn)識(shí)和把握應(yīng)該說是很突出的。像剛才我們說的立體幾何里,我們常說的是空間想象能力,空間的問題能不能轉(zhuǎn)化平面的問題,會(huì)不會(huì)用向量來解決立體幾何問題。平面解析幾何就是要考察我們會(huì)不會(huì)用代數(shù)方法來解決問題。怎樣用代數(shù)方法解決幾何問題呢?從剛才分析看到,有兩個(gè)環(huán)節(jié),第一個(gè)環(huán)節(jié),通過讀題以后,你能不能認(rèn)識(shí)到問題中所描述的幾何對(duì)象的幾何特征是什么,要把它的幾何特征充分挖掘出來,我們才有可能準(zhǔn)確進(jìn)行代數(shù)化。有了代數(shù)形式之后,我們?cè)倮么鷶?shù)的方法來解決它,解決完之后我們?cè)龠原成幾何結(jié)論,可以說這點(diǎn)學(xué)科特點(diǎn)非常鮮明。

 另外我感覺,有些試題比較新穎一些,每年的高考題中都有一道兩道比較出彩的題目,題目不見得難,但跳出了同學(xué)、學(xué)生常規(guī)的思維,因?yàn)榭忌诟呷龔?fù)習(xí)一年碰到大量的題目,但數(shù)學(xué)不是考你的記憶,你背的題型,而是考你的思維能力。怎樣考察你的思維能力?就是通過新穎的問題,讓你在看似陌生,但要給你創(chuàng)造一個(gè)范圍,不是常規(guī)的題型,這次高考也注意到這些問題。第六小題考察向量。我們看一下題目,說A、B、C是單位向量,單位向量A、B但成為零,說明兩個(gè)是垂直,求A-C這個(gè)向量和B-C這個(gè)向量的值。看這個(gè)問題問的形式也還比較新穎,同學(xué)們?cè)诖鸬臅r(shí)候要充分注意到,因?yàn)橄蛄坑写鷶?shù)的屬性和幾何的屬性,在解決這樣一個(gè)問題的時(shí)候,要首先從幾何角度去分析,A、B向量由于數(shù)量成積為零,兩個(gè)向量是垂直的,向量C是可以平移的,我平移過來之后,向量A、向量B和向量C是兩個(gè)互余的角,這樣也就為一個(gè)是用坐標(biāo),一個(gè)是用定義來求最小值,這是非常關(guān)鍵的,向量A、向量B是一個(gè)余角,這是非常關(guān)鍵的條件。這道題應(yīng)該說有一定新穎,突破高三復(fù)習(xí)中一些常規(guī)、常見的題型,對(duì)發(fā)展同學(xué)的思維能力是非常有意義的。

 從整個(gè)填空題來看,四道填空題,剛才談到了二、三、四的題,第四題考了一個(gè)等差數(shù)列,第二十題考察了一個(gè)數(shù)列,整套試卷對(duì)主干知識(shí)考察非常重要,它首先是函數(shù),是一個(gè)非零自然數(shù)離散的自變量函數(shù),非常特殊。對(duì)于數(shù)列的考察,或者同學(xué)復(fù)習(xí)數(shù)列的時(shí)候,我認(rèn)為首先一點(diǎn)要掌握它最基本的解題,分析題的方法和思路。比如第十四小題,他說等差數(shù)列,同學(xué)非常熟悉,前X9和等于72,可以把第五項(xiàng)算出來,求的是第二項(xiàng)加第四項(xiàng)加第九項(xiàng)等于多少。數(shù)列是個(gè)二元問題,求出等差才能求出通項(xiàng),這很明顯有一個(gè)條件,所以不可能把首項(xiàng)和公差分別求出。同學(xué)在做這道題的時(shí)候要有整體代入的想法,整體代入的想法在數(shù)學(xué)思想方法中是很重要的方法。這道題不能把首項(xiàng)和公差分別求出,要采取不同的方法,由于A5算出來是8,A1+4D就是8,就是一個(gè)圓,不能再奢望求A1和公差,A1+A2+A9能得出多少公差和數(shù)列,這對(duì)考題考察是最基本的。簡(jiǎn)單題里的數(shù)列問題看起來好象有點(diǎn)難度,但實(shí)際上同學(xué)們要分析的話,其實(shí)這道題并沒有超出我們平時(shí)復(fù)習(xí),或者我們常常做的數(shù)列題的難度。

 我們來看這道題,如果我們不做,看一下這兩個(gè)問題可以發(fā)現(xiàn),如果第一問求出,就是BN,就是AN分之AN,你知道一個(gè)數(shù)列的通項(xiàng)公式當(dāng)然也就可以求出同類項(xiàng)。這個(gè)問題解決難度大一點(diǎn),第一個(gè)問題解決了第二問比較順利。問題其實(shí)綜合給的條件是等式是這道題最關(guān)鍵的地方,你注意分析求什么數(shù)列,AN分之AN是數(shù)列的第一項(xiàng),要把等式的右邊括號(hào)進(jìn)行整理,整理出N分之AN乘以N+1,加上2的7次方的N+1,這么一通分之后,左邊兩項(xiàng)都有一個(gè)N+1,就可以等于兩邊通除N+1。對(duì)于這樣的關(guān)系式,同學(xué)們做題就容易一些了,這非常像等比數(shù)列的關(guān)系。但有一個(gè)問題,這是2的N次方分之一,怎么辦呢?我們只要在等式兩邊同乘2的N次方或者2的N次方加1,設(shè)一個(gè)乘數(shù)的大小,就會(huì)得出一個(gè)等比數(shù)量。即使簡(jiǎn)答題的二十題已經(jīng)很靠后的題目,但考察的內(nèi)容都是非;镜,只要這一天中復(fù)習(xí)到位,復(fù)習(xí)比較扎實(shí)的話,這樣的數(shù)列問題我們是能夠拿下來的。

 我剛才談到了,從這些卷子來看,包括第十九題概率題也是這樣,很常規(guī),兩個(gè)人圍棋比賽,做了一個(gè)規(guī)定,三局就是獲勝,給甲獲勝的概率,乙獲勝的概率,比較獨(dú)立。前兩局中甲乙勝了一局,現(xiàn)在問你甲獲勝的概率比例是多少?你需要把情況分清楚,甲幾種情況就可以獲勝,因?yàn)樗呀?jīng)勝了一局,特別注意乙已經(jīng)勝了一局,把題目條件想明白就行了,比如甲輸一場(chǎng),不可能最后就輸,再贏兩場(chǎng),或者先輸一局再贏兩局,都有可能的。甲再輸兩局呢?就不可能了,因?yàn)橐呀?jīng)勝了一局。這樣我們就把時(shí)機(jī)問題轉(zhuǎn)化為數(shù)學(xué)的想法來思考,這樣題目也就比較順利地能夠解決。

 從整個(gè)試卷的分析來看,我感覺題目的難度應(yīng)該說和前兩年比沒有什么太大變化,從整張?jiān)嚲韥砜,由易到難,即使到了難題部分,應(yīng)該說考察的也是我們高中數(shù)學(xué)最重要,最核心的內(nèi)容,最基本的內(nèi)容,考察的是數(shù)學(xué)本質(zhì)的東西。這樣的話,應(yīng)該說對(duì)于我們今后的高三復(fù)習(xí)也有非常好的指導(dǎo)作用。也就是說,如何把數(shù)學(xué)通過一年的復(fù)習(xí),復(fù)習(xí)到位。通過這道試題我有一個(gè)初步的想法,對(duì)于我們同學(xué)來說,只有把數(shù)學(xué)的思維方法掌握住了,不是靠做大量的題,很多同學(xué)記答案和過程,這都是數(shù)學(xué)的解題方法,要抓住數(shù)學(xué)的思維特征。比如復(fù)習(xí)函數(shù),函數(shù)的思維特征是什么?剛才我們提到了函數(shù)的幾個(gè)問題,幾何、立體幾何、平面、解析幾何思維特征是什么,向量是工具,思維特征在哪里?三角函數(shù)數(shù)列首先是函數(shù),也具備了函數(shù)的思維特征,但也有一些特殊性。三角函數(shù)和數(shù)列跟我們常說的函數(shù)有一定的區(qū)別,它的思維方式又在哪里?抓住這樣的思維特點(diǎn),應(yīng)該說我們才有可能真正地把數(shù)學(xué)的復(fù)習(xí)到位,能夠復(fù)習(xí)到點(diǎn)子上。

 小結(jié)一下我以上的分析,09年高考數(shù)學(xué)試卷還是遵循了科學(xué)性、公平性、規(guī)范性的原則,體現(xiàn)了這個(gè)時(shí)代的精神。融入了探究實(shí)踐、變革的一些理念,特別是新課程的理念應(yīng)該說有所滲透。但是我想更重要一點(diǎn),它還是保留了全國(guó)試卷的傳統(tǒng)風(fēng)格,應(yīng)該說區(qū)分合理,體現(xiàn)了高考的選拔功能,對(duì)中學(xué)教學(xué)有非常良好的導(dǎo)向作用。

 主持人:謝謝張老師今天晚上給我們進(jìn)行這么精彩的點(diǎn)評(píng),也感謝各位網(wǎng)友的關(guān)注!再見!

 張鶴:謝謝!再見!

試題詳情

1、用向量解的同學(xué)可能會(huì)感覺稍稍舒服一點(diǎn)。簡(jiǎn)答題里的第十八題這道題來看,還有剛才我提到的第七小題,這兩道題我的感覺,因?yàn)槲覜]有繼續(xù)做得太多,感覺用向量法的同學(xué)會(huì)稍稍簡(jiǎn)單一些。這也還是體現(xiàn)了新課程對(duì)立體幾何教學(xué)的一個(gè)滲透。這兩道題還是大綱卷,但在課標(biāo)卷或者新課標(biāo)卷中,對(duì)解決向量解決立體幾何是理科同學(xué)必須要學(xué)的內(nèi)容,所以我們要特別關(guān)注新課標(biāo)對(duì)我們高三同學(xué)對(duì)大綱教學(xué)的理解和滲透。

試題詳情

16.一輛汽車質(zhì)量為M=2.0×103kg,發(fā)動(dòng)機(jī)的額定功率為84kw,汽車從靜止開始以勻加速

直線運(yùn)動(dòng)起動(dòng),加速度大小為a=2.0m/s2,當(dāng)達(dá)到額定功率時(shí),保持功率不變繼續(xù)加速達(dá)到汽車的最大速度。運(yùn)動(dòng)中汽車一直受到大小為車重0.10倍的恒定阻力,g取10m/s2。求:

(1)汽車運(yùn)動(dòng)中的最大速度

(2)汽車開始運(yùn)動(dòng)后第5s末的瞬時(shí)功率

(3)若汽車從靜止起動(dòng)至速度最大共用時(shí)72秒,求汽車在此過程中總位移的大小。

試題詳情


同步練習(xí)冊(cè)答案