(Ⅲ)在Rt△NEF中,NF==,
∴二面角N―CM―B的大小是arctan2.
在Rt△NEF中,tan∠NFE==2,
在正△ABC中,由平幾知識(shí)可求得EF=MB=,
∵SN=NB,∴NE=SD===,且ED=EB.
(Ⅱ)∵AC⊥平面SDB,AC平面ABC,
∴平面SDB⊥平面ABC.
過N作NE⊥BD于E,NE⊥平面ABC,
過E作EF⊥CM于F,連結(jié)NF,
則NF⊥CM.
∴∠NFE為二面角N-CM-B的平面角.
∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.
又∵NE⊥平面ABC,∴NE∥SD.
∴AC⊥平面SDB,又SB平面SDB,
∴AC⊥SB.
(19)本小題主要考查直線與直線,直線與平面,二面角,點(diǎn)到平面的距離等基礎(chǔ)知識(shí),考查空間想象能力和邏輯推理能力.滿分12分.
解法一:(Ⅰ)取AC中點(diǎn)D,連結(jié)SD、DB.
∵SA=SC,AB=BC,
∴AC⊥SD且AC⊥BD,
答:甲、乙兩人至少有一人考試合格的概率為.
=×+×+×=.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com