(Ⅰ)當(dāng)時(shí).用表示, 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)設(shè)為兩個(gè)不共線的向量,,試用為基底表示向量
(Ⅱ)已知向量,當(dāng)k為何值時(shí),?平行時(shí)它們是同向還是反向?

查看答案和解析>>


(1)當(dāng)時(shí),求橢圓的標(biāo)準(zhǔn)方程及其右準(zhǔn)線的方程;
(2)用表示P點(diǎn)的坐標(biāo);
(3)是否存在實(shí)數(shù),使得的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(Ⅰ)設(shè)
e1
 , 
e2
為兩個(gè)不共線的向量,
a
=-
e1
+3
e2
 , 
b
=4
e1
+2
e2
 , 
c
=-3
e1
+12
e2
,試用
b
 , 
c
為基底表示向量
a
;
(Ⅱ)已知向量
a
=( 3 , 2 ) , 
b
=( -1 , 2 ) , 
c
=( 4 , 1 )
,當(dāng)k為何值時(shí),
a
+k
c
 )
( 2
b
-
a
 )
?平行時(shí)它們是同向還是反向?

查看答案和解析>>

 設(shè)函數(shù)

(1)當(dāng) 時(shí),用表示的最大值;

(2)當(dāng)時(shí),求的值,并對(duì)此值求的最小值;

(3)問(wèn)取何值時(shí),方程=上有兩解?

查看答案和解析>>

有時(shí)可用函數(shù)f(x)=
0.1+15ln
a
a-x
x≤6
x-4.4
x-4
x>6
,描述學(xué)習(xí)某學(xué)科知識(shí)的掌握程度.其中x表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(x∈N*),f(x)表示對(duì)該學(xué)科知識(shí)的掌握程度,正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān).
(1)證明:當(dāng)x≥7時(shí),掌握程度的增長(zhǎng)量f(x+1)-f(x)總是下降;
(2)根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對(duì)應(yīng)的a的取值區(qū)間分別為(115,121],(121,127],(127,133].當(dāng)學(xué)習(xí)某學(xué)科知識(shí)6次時(shí),掌握程度是85%,請(qǐng)確定相應(yīng)的學(xué)科.

查看答案和解析>>

一、學(xué)科網(wǎng)(Zxxk.Com)

1.C       2.A      3.D      4.C       5.A      6.B       7.A      8.C       9.D      10.C 學(xué)科網(wǎng)(Zxxk.Com)

11.D     12.B學(xué)科網(wǎng)(Zxxk.Com)

1~5略學(xué)科網(wǎng)(Zxxk.Com)

6.學(xué)科網(wǎng)(Zxxk.Com)

7.解:學(xué)科網(wǎng)(Zxxk.Com)

       學(xué)科網(wǎng)(Zxxk.Com)

       學(xué)科網(wǎng)(Zxxk.Com)

其展開(kāi)式中含的項(xiàng)是:,系數(shù)等于學(xué)科網(wǎng)(Zxxk.Com)

8.解:根據(jù)題意:學(xué)科網(wǎng)(Zxxk.Com)

9.解:,橢圓離心率為,,學(xué)科網(wǎng)(Zxxk.Com)

10.解:依腰意作出圖形.取中點(diǎn),連接、,則,不妨設(shè)四面體棱長(zhǎng)為2,則是等腰三角形,必是銳角,就是所成的角,學(xué)科網(wǎng)(Zxxk.Com)

學(xué)科網(wǎng)(Zxxk.Com)

11.解:已知兩腰所在直線斜率為1,,設(shè)底邊所在直線斜率為,已知底角相等,由到角公式得:學(xué)科網(wǎng)(Zxxk.Com)

學(xué)科網(wǎng)(Zxxk.Com)

       ,解得學(xué)科網(wǎng)(Zxxk.Com)

       由于等腰三角底邊過(guò)點(diǎn)(,0)則只能取學(xué)科網(wǎng)(Zxxk.Com)

12.解:如圖,正四面體中,學(xué)科網(wǎng)(Zxxk.Com)

       學(xué)科網(wǎng)(Zxxk.Com)

中心,連,此四面體內(nèi)切球與外接球具有共同球心必在上,并且等于內(nèi)切球半徑,等于外接球半徑.記面積為,則學(xué)科網(wǎng)(Zxxk.Com)

,從而學(xué)科網(wǎng)(Zxxk.Com)

二、學(xué)科網(wǎng)(Zxxk.Com)

13..解:共線學(xué)科網(wǎng)(Zxxk.Com)

14..解:,曲線在(1,0)處的切線與直線垂直,則,的傾角是學(xué)科網(wǎng)(Zxxk.Com)

15.曲線      ①,化作標(biāo)準(zhǔn)形式為,表示橢圓,由于對(duì)稱性.取焦點(diǎn),過(guò)且傾角是135°的弦所在直線方程為:,即②,聯(lián)立式①與式②.消去y,得:,由弦長(zhǎng)公式得:

16.充要條件①:底面是正三角形,頂點(diǎn)在底面的射影恰是底面的中心.

充要條件②:底面是正三角形.且三條側(cè)棱長(zhǎng)相等,

充要條件③:底面是正三角形,且三個(gè)側(cè)面與底面所成角相等.

再如:底面是正三角形.且三條側(cè)棱與底面所成角相等;三條側(cè)棱長(zhǎng)相等,且三個(gè)側(cè)面與底面所成角相等;三個(gè)側(cè)面與底面所成角相等,三個(gè)側(cè)面兩兩所成二面角相等.

三、

17.解:,則,.由正弦定理得

      

      

      

18.(1)證:已知是正三棱柱,取中點(diǎn),中點(diǎn),連,則、兩兩垂直,以、、、軸建立空間直角坐標(biāo)系,又已知,

,則,又因相交,故

(2)解:由(1)知,是面的一個(gè)法向量.

             

,設(shè)是面的一個(gè)法向量,則①,②,取,聯(lián)立式①、②解得,則

              二面角是銳二面角,記其大小為.則

              ,

二面角的大小,亦可用傳統(tǒng)方法解(略).

19.解:已知各投保學(xué)生是否出險(xiǎn)相互獨(dú)立,且每個(gè)投保學(xué)生在一年內(nèi)出險(xiǎn)的概率都是,記投保的5000個(gè)學(xué)生中出險(xiǎn)的人數(shù)為,則(5000,0.004)即服從二項(xiàng)分布.

(1)記“保險(xiǎn)公司在學(xué)平險(xiǎn)險(xiǎn)種中一年內(nèi)支付賠償金至少5000元”為事件A,則

              ,

             

(2)該保險(xiǎn)公司學(xué)平險(xiǎn)除種總收入為元=25萬(wàn)元,支出成本8萬(wàn)元,支付賠償金5000元=0.5萬(wàn)元,盈利萬(wàn)元.

~知,,

進(jìn)而萬(wàn)元.

故該保險(xiǎn)公司在學(xué)平險(xiǎn)險(xiǎn)種上盈利的期望是7萬(wàn)元.

20.解(1):由,即

              ,而

由表可知,上分別是增函數(shù),在上分別是減函數(shù).

.   

(2)時(shí),等價(jià)于,記,

,因,

上是減函數(shù),,故

當(dāng)時(shí),就是,顯然成立,綜上可得的取值范圍是:

22.解:(1)由條件可知橢圓的方程是:

             

                ①,直線的方程是            ②,

聯(lián)立式①、②消去并整理得,由此出發(fā)時(shí),是等比數(shù)列,

(2)由(1)可知,.當(dāng)時(shí),

      

       ,

       是遞減數(shù)列

       對(duì)恒成立

       ,時(shí),是遞減數(shù)列.

21.解(1):,由解得函數(shù)定義域呈

              ,由解得,列表如下:

0

0

極大

極小

              解得,進(jìn)而求得中點(diǎn)

              己知在直線上,則

       (2)

設(shè),則,點(diǎn)到直線的距離

,由于直線與線段相交于,則,則

,則

其次,,同理求得的中離:,

設(shè),即,由

,

時(shí),

,當(dāng)時(shí),.注意到,由對(duì)稱性,時(shí)仍有

 

,進(jìn)而

故四邊形的面積:

,

當(dāng)時(shí),

 


同步練習(xí)冊(cè)答案