高三數(shù)學(xué)同步檢測(cè)(七)
第二章單元檢測(cè)(A)
說(shuō)明:本試卷分為第Ⅰ、Ⅱ卷兩部分,請(qǐng)將第Ⅰ卷選擇題的答案填入題后括號(hào)內(nèi),第Ⅱ卷可在各題后直接作答.共100分,考試時(shí)間90分鐘.
第Ⅰ卷(選擇題共40分)
一、選擇題(本大題共10小題,每小題4分,共40分)
1.式子12+22+32+…+n2=在( )
A.n為任何自然數(shù)時(shí)都成立
B.n=1,2時(shí)成立,n=3時(shí)不成立
C.n=4時(shí)成立,n=5時(shí)不成立
D.n=3時(shí)成立,n=4時(shí)不成立
解析用數(shù)學(xué)歸納法證題的前提是分清等式兩邊的構(gòu)成情況,就本題而言,它的左邊是從1開(kāi)始的n個(gè)連續(xù)正整數(shù)的平方和的形式,可采用直接代入法求解.
答案 D
2.設(shè),若f(x)存在,則常數(shù)b的值是( )
A.0 B.1 C.-1 D.e
分析 本題考查f(x)=a的充要條件:
f(x)=f(x)=a.
解 ∵(2x+b)=b,ex=1,
又條件f(x)存在,∴b=1.
答案 B
3.用數(shù)學(xué)歸納法證明+cosα+cos3α+…+cos(2n-1)α=??
(α≠kπ,n∈N*),驗(yàn)證n=1等式成立時(shí),左邊計(jì)算所得的項(xiàng)是( )
A. B.+cosα
C.+cosα+cos3α D.+cosα+cos3α+cos5α
分析 分清等式左邊的構(gòu)成情況是解決此題的關(guān)鍵;對(duì)于本題也可把n=1代入右邊化簡(jiǎn)得出左邊.
解法一 因?yàn)榈仁降淖筮吺?n+1)項(xiàng)的形式,故n=1時(shí),應(yīng)保留兩項(xiàng),它們是+cosα.
解法二 當(dāng)n=1時(shí),右邊=sincos=?(sin2α+sinα)= (sinαcosα+sinα)=+cosα.
答案 B
4.數(shù)列1,,,,…,…的前n項(xiàng)和為Sn,則等于( )
A.0 B. C.1 D.2
分析 本題考查數(shù)列極限的求法.要求數(shù)列{an}的前n項(xiàng)和,應(yīng)首先確定它的通項(xiàng)公式.
解 ∵an==
∴Sn=a1+a2+…+an=2(1-+-+…+-)=.
∴Sn=.
答案 D
5.★若,則a的值為( )
A.0 B.1 C.-1 D.
分析 本題考查當(dāng)x→x0時(shí)函數(shù)的極限.
解 ∵存在,而把x=2代入分母時(shí),分母為零,
∴分子、分母應(yīng)有(x-2)這一公因式,化簡(jiǎn)以后,再求極限.
∴分子x2+ax-2可分解成(x-2)(x+1),
即x2+ax-2=(x-2)(x+1)=x2-x-2.
∴a=-1.
答案 C
6.等于( )
A.0 B.-1 C.1 D.不存在
分析 本題考查函數(shù)f(x)的極限.若把x=-1代入函數(shù)解析式,解析式無(wú)意義,故應(yīng)化簡(jiǎn)函數(shù)解析式,約去使它的分母為0的因式,再求解.
解 =
==
=
答案 B
7.★已知數(shù)列{an}是由正數(shù)組成的數(shù)列,a1=3,且滿(mǎn)足lgan=lgan-1+lgc,其中n>1且為整數(shù),c>2,則等于( )
A.-1 B.1 C. D.
分析 本題考查數(shù)列的極限及運(yùn)算能力.
解 ∵an>0,lgan=lgan-1+lgc,
∴an=an-1?c,=c,
即數(shù)列{an}是首項(xiàng)為a1=3,公比為c的等比數(shù)列,an=3?cn-1(c>2),
答案 A
8.★欲用數(shù)學(xué)歸納法證明對(duì)于足夠大的自然數(shù)n,總有2n>n3,n0為驗(yàn)證的第一個(gè)值,則( )
A.n0=1
B.n0為大于1小于10的某個(gè)整數(shù)
C.n0≥10
D.n0=2
解析 本題考查用數(shù)學(xué)歸納法證明問(wèn)題時(shí),第一步初始值n0的確定.不能認(rèn)為初始值都從n0=1開(kāi)始,需根據(jù)實(shí)際題目而定.當(dāng)1≤n<10時(shí),2n與n3的大小不確定,而當(dāng)n≥10時(shí),總有2n>n3.
答案 C
9.★用數(shù)學(xué)歸納法證明命題“n3+(n+1)3+(n+2)3(n∈N)能被9整除”,要利用歸納假設(shè)證n=k+1時(shí)的情況,只需展開(kāi)( )
A.(k+3)3 B.(k+2)3
C.(k+1)3 D.(k+1)3+(k+2)3
分析 本題考查用數(shù)學(xué)歸納法證明整除性問(wèn)題.只需把n=k+1時(shí)的情況拼湊成一部分為假設(shè)的形式,另一部分為除數(shù)的倍數(shù)形式即可.
解 當(dāng)n=k+1時(shí),被除數(shù)為(k+1)3+(k+2)3+(k+3)3=k3+(k+1)3+(k+2)3+9(k2+3k+3).故只需展開(kāi)(k+3)3即可.
答案 A
10. 則a的取值范圍是( )
A.a=1 B.a<-1或a>
C.-1<a< D.a<-或a>1
分析 本題考查極限qn=0,|q|<1.要求a的范圍,可列a的不等式,要注意分式不等式的解法.
解法一 ∵()n=0,∴||<1
∴a<-1或a>.
解法二 本題可利用特殊值代入法,當(dāng)a=1時(shí)成立,排除C、D.再令a=,∵()n=0成立,∴排除A.
答案 B
第Ⅱ卷(非選擇題共60分)
二、填空題(本大題共4小題,每小題4分,共16分.把答案填在題中橫線上)
11.用數(shù)學(xué)歸納法證明,假設(shè)n=k時(shí),不等式成立,則當(dāng)n=k+1時(shí),應(yīng)推證的目標(biāo)不等式是 .
解析 因?yàn)樽宰兞咳時(shí),不等式的左邊為n項(xiàng)和的形式,所以當(dāng)n=k+1時(shí)應(yīng)為k+1項(xiàng)的和,它們是,右邊只需把n=k+1代入即可,它們是,故應(yīng)推證的不等式是
答案
12.()= .
分析 本題考查數(shù)列極限的運(yùn)算.此題屬于“∞-∞”型,應(yīng)先分子有理化,再求極限.
解 (n-n+1)==
答案 0
13.★設(shè)函數(shù)在x=0處連續(xù),則實(shí)數(shù)a的值為 .
分析 本題考查函數(shù)的極限及函數(shù)f(x)在點(diǎn)x0處連續(xù)的定義.
解 ∵函數(shù)f(x)在點(diǎn)x0處連續(xù),
又∵f(0)=a,∴a=.
答案
14.已知,則a的值為 .
分析 本題考查f(x)的極限.因?yàn)榘褁=x0代入分式的分子,分子不為0.又因?yàn)?sub>f(x)存在,所以把x=x0代入分母,分母必不為0.故采用直接代入法即可求極限.
解 ∵
答案
三、解答題(本大題共5小題,共44分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟)
15.(本小題滿(mǎn)分8分)平面內(nèi)有n個(gè)圓,其中每?jī)蓚(gè)圓都相交于兩點(diǎn),并且每三個(gè)圓都不相交于同一點(diǎn),求證:n個(gè)圓把平面分成f(n)=n2-n+2個(gè)部分.
分析 本題的關(guān)鍵在于如何應(yīng)用歸納假設(shè)及已知條件分析當(dāng)n=k+1時(shí),第k+1個(gè)圓與其他k個(gè)圓的交點(diǎn)個(gè)數(shù),做到有目的的變形.
證明 (1)當(dāng)n=1時(shí),一個(gè)圓把平面分成兩部分,又12-1+2=2,故命題成立.
(2)假設(shè)n=k(k∈N*)時(shí),命題成立,即滿(mǎn)足題設(shè)條件的k個(gè)圓把平面分成f(k)=k2-k+2個(gè)部分.2分
那么當(dāng)n=k+1時(shí),設(shè)第k+1個(gè)圓為⊙O,由題意,它與k個(gè)圓中每個(gè)圓交于兩點(diǎn),又無(wú)三個(gè)圓交于同一點(diǎn),于是它與其他k個(gè)圓交于2k個(gè)點(diǎn),這些點(diǎn)把⊙O分成2k條弧,即f(k+1)=f(k)+2k=k2-k+2+2k=(k+1)2-(k+1)+2. 6分
這就是說(shuō),當(dāng)n=k+1時(shí),命題也成立.
綜上可知,對(duì)一切n∈N*,命題都成立. 8分
16.(本小題滿(mǎn)分8分)設(shè)f(x)是一次函數(shù),f(8)=15,且f(2),f(5),f(4)成等比數(shù)列,求.
分析 本題為函數(shù)、數(shù)列、極限的一道綜合題.解題關(guān)鍵是先利用待定系數(shù)法確定f(x)的解析式,再求f(1)+f(2)+…+f(n),然后利用極限的運(yùn)算法則求極限.
解 設(shè)f(x)=kx+b,
由條件,得8k+b=15,∴b=15-8k.
∵f (2), f (5), f (4)成等比數(shù)列,
∴(5k+b)2=(2k+b)(4k+b). 2分
把b=15-8k代入,
得(15-3k)2=(15-6k)(15-4k).
解得k=4,k=0(舍),b=-17.
∴f(x)=4x-17. 4分
∴f(1)+f(2)+…+f(n)
=(4×1-17)+(4×2-17)+…+(4×n-17)
=4×(1+2+…+n)-17n
=4?-17n=2n2-15n. 6分
∴
= 8分
17.(本小題滿(mǎn)分8分)某校有教職工150人,為了豐富教工的課余生活,每天定時(shí)開(kāi)放健身房和娛樂(lè)室.據(jù)調(diào)查統(tǒng)計(jì),每次去健身房的人有10%下次去娛樂(lè)室,則在娛樂(lè)室的人有20%下次去健身房.請(qǐng)問(wèn),隨著時(shí)間的推移,去健身房的人數(shù)能否趨于穩(wěn)定?
分析 本題考查用數(shù)列的遞推公式求通項(xiàng)及數(shù)列的極限.
解 設(shè)第n次去健身房的人數(shù)為an,去娛樂(lè)室的人數(shù)為bn,則an+bn=150, 2分
∴an=an-1+bn-1=an-1+(150-an-1)=an-1+30,
即an=an-1+30. 4分
∴an-100=(an-1-100).于是an-100=(a1-100)?()n-1,即an=100+()n-1?(a1-100). 6分
∴an=100.故隨著時(shí)間的推移,去健身房的人數(shù)穩(wěn)定在100人左右. 8分
18.(本小題滿(mǎn)分10分)已知數(shù)列{an}、{bn},其中an=1+3+5+…+(2n+1),bn=2n+4(n≥5),試問(wèn)是否存在這樣的自然數(shù)n,使得an≤bn成立?
分析 對(duì)n賦值后,比較幾對(duì)an與bn的大小,可作出合理猜測(cè),再用數(shù)學(xué)歸納法予以證明.
解 an=1+3+5+…+(2n+1)=(n+1)2,
當(dāng)n=5時(shí),a5=36,b5=25+4=36,此時(shí)a5=b5;
當(dāng)n=6時(shí), a6=49,b6=26+4=68,此時(shí)a6<b6;
當(dāng)n=7時(shí),a7=64,b7=27+4=132,此時(shí)a7<b7;
當(dāng)n=8時(shí),a8=81,b8=28+4=260,此時(shí)a8<b8.
猜想:當(dāng)n≥6時(shí),有an<bn. 3分
下面用數(shù)學(xué)歸納法證明上述猜想.
①當(dāng)n=6時(shí),顯然不等式成立,∴n=6時(shí),不等式an<bn成立;
②假設(shè)當(dāng)n=k(k≥6)時(shí),不等式成立,即ak<bk,也即(k+1)2<2k+4;當(dāng)n=k+1時(shí),bk+1=2k+1+4=2(2k+4)-4>2(k+1)2-4=2k2+4k-2,
而(2k2+4k-2)-(k+2)2=k2-6>0(∵k≥6,∴k2>6),
即2k2+4k-2>(k+2)2=[(k+1)+1]2.
由不等式的傳遞性,知bk+1>[(k+1)+1]2=ak+1.
∴當(dāng)n=k+1時(shí),不等式也成立. 8分
由①②可知,對(duì)一切n∈N,且n≥6,都有an<bn.
綜上所述,可知只有當(dāng)n=5時(shí),an=bn;當(dāng)n≥6時(shí),an<bn.因此存在使an≤bn成立的自然數(shù)n.
10分
19.★(本小題滿(mǎn)分10分)已知數(shù)列{an}、{bn}都是無(wú)窮等差數(shù)列,其中a1=3,b1=2,b2是a2與a3的等差中項(xiàng),且.求極限的值.
分析 首先需求出an、bn的表達(dá)式,以確定所求極限的表達(dá)式,為此,關(guān)鍵在于求出兩個(gè)數(shù)列的公差,“b2是a2與a3的等差中項(xiàng)”已給出一個(gè)等量關(guān)系,“an與bn之比的極限為”又給出了另一個(gè)等量關(guān)系,故可考慮先設(shè)出公差用二元方程組求解.
解 設(shè){an}、{bn}的公差分別為d1、d2,
∵2b2=a2+a3,即2(2+d2)=(3+d1)+(3+2d1),
∴2d2-3d1=2.① 2分
又
即d2=2d1,② 4分
聯(lián)立①②解得d1=2,d2=4.
∴an=a1+(n-1)d1=3+(n-1)?2=2n+1,
bn=b1+(n-1)d2=2+(n-1)?4=4n-2. 6分
10分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com