平面內(nèi)有n個圓,其中每兩個圓都相交于兩點(diǎn),并且每三個圓都不相交于同一點(diǎn),求證:n個圓把平面分成f(n)=n2-n+2個部分.分析 本題的關(guān)鍵在于如何應(yīng)用歸納假設(shè)及已知條件分析當(dāng)n=k+1時,第k+1個圓與其他k個圓的交點(diǎn)個數(shù),做到有目的的變形.證明 (1)當(dāng)n=1時,一個圓把平面分成兩部分,又12-1+2=2,故命題成立.時,命題成立,即滿足題設(shè)條件的k個圓把平面分成f(k)=k2-k+2個部分.2分 查看更多

 

題目列表(包括答案和解析)

四.附加題(本小題滿分8分)

設(shè)復(fù)數(shù)與復(fù)平面上點(diǎn)P(x,y)對應(yīng),且復(fù)數(shù)滿足條件

|a(其中n.常數(shù)a當(dāng)n為奇數(shù)時,動點(diǎn)P(x,y)的軌跡為C1, 當(dāng)n為偶數(shù)時,動點(diǎn)P(x,y)的軌跡為C2,且兩條曲線都經(jīng)過點(diǎn)D(2,),求軌跡C與C2的方程?

 

查看答案和解析>>

(09年長沙一中第八次月考理)(本小題滿分12分)我校文化體育藝術(shù)節(jié)的乒乓球決賽在甲乙兩人中進(jìn)行,比賽規(guī)則如下:比賽采用7局4勝制(先勝4局這獲勝即比賽結(jié)束),在每一局比賽中,先得11分的一方為勝方;比賽沒有平局,10平后,先連得2分的一方為勝方

(1)根據(jù)以往戰(zhàn)況,每局比賽甲勝乙的概率為0.6,設(shè)比賽的場數(shù)為,求的分布列和期望;

(2)若雙方在每一分的爭奪中甲勝的概率也為0.6,求決勝局中甲在以8:9落后的情況下最終以12:10獲勝的概率。

查看答案和解析>>


同步練習(xí)冊答案