2009年哈師大附中高二下學(xué)期期中考試數(shù)學(xué)試卷(理科)
第Ⅰ卷 (選擇題 共60分)
一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)
1.若復(fù)數(shù),則對(duì)應(yīng)復(fù)平面上的點(diǎn)在 ( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.定積分的值為 ( )
A.1
B.
3.以下圖形分別表示一個(gè)三次函數(shù)及其導(dǎo)數(shù)在同一坐標(biāo)系中的圖象,其中一定不正確的有 ( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
4.函數(shù)的單調(diào)遞增區(qū)間是 ( )
A. B. C. D.
5.已知函數(shù),則等于 ( )
A. B. C. D.
6.已知,則的值為 ( )
A. B. C. D.不存在
7.設(shè)坐標(biāo)平面上的拋物線C:,過第一象限的點(diǎn)作曲線C的切線,與軸的夾角為30o,則的值為 ( )
A. B. C. D.
8.已知,,且,則實(shí)數(shù)的值為 ( )
A. B. C. D.
9.若直線和⊙O:沒有交點(diǎn),則過點(diǎn)的直線與橢圓的交點(diǎn)個(gè)數(shù)為 ( )
A.至多1個(gè) B.2個(gè) C.1個(gè) D.0個(gè)
10.函數(shù)是圓心在原點(diǎn)的單位圓的兩段圓。ㄈ鐖D),則不等式的解集為( )
A.
B.
C.
D.
11.若,則與的大小關(guān)系是 ( )
A. B. C. D.與的值有關(guān)
12.偶函數(shù)在內(nèi)可導(dǎo),且,,則曲線 在點(diǎn)處切線的斜率為 ( )
A. B. C. D.
第Ⅱ卷 (非選擇題 共90分)
二、填空題(本大題共4小題,每小題5分,共20分,把答案填在答題紙相應(yīng)位置上)
13.已知某圓的極坐標(biāo)方程為,化為普通方程為______________________.
14.把由曲線及軸所圍成的曲邊梯形繞軸旋轉(zhuǎn)一周,則旋轉(zhuǎn)所形成的旋轉(zhuǎn)體的體積為_____________.
15.已知,則_____________.
16.已知函數(shù)都是定義在上的函數(shù),,,,,在有窮數(shù)列中,任意取正整數(shù),前項(xiàng)和大于的概率是 _____________.
三、解答題(本大題共6小題,共70分,解答應(yīng)寫出文字說明、證明過程或演算步驟)
17.(本題滿分10分)
已知復(fù)數(shù),當(dāng)為何值時(shí),復(fù)數(shù):
(1)是實(shí)數(shù);
(2)是純虛數(shù).
18.(本題滿分12分)
已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
19.(本題滿分12分)
如圖,在會(huì)展中心廣場(chǎng)要臨時(shí)搭建占地面積為平方米長(zhǎng)寬不等的冰雕景區(qū),四周有小路,冰雕景區(qū)長(zhǎng)邊外小路寬
20.(本題滿分12分)
如圖,直三棱柱ABC―A1B
(1)求證:AD⊥平面BB
(2)若E為AD上不同于A、D的任一點(diǎn),求證:EF⊥FC1;
(3)若AB=3,求FC1與平面AA1B1B所成角的正弦值.
21.(本題滿分12分)
已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓上的3個(gè)點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)頂點(diǎn),BC過橢圓中心,且,.
(1)求橢圓方程;
(2)動(dòng)弦CP、CQ分別交軸于E、F兩點(diǎn),且, 求證:.
22.(本題滿分12分)
已知函數(shù)的圖象如圖所示,與軸相切于點(diǎn)O,與正半軸相交于點(diǎn)A,且此函數(shù)圖象與軸所圍成區(qū)域(圖中陰影部分)的面積為.
(1)求函數(shù)的解析式;
(2)設(shè),如果過點(diǎn)可作函數(shù)的兩條切線,
求證:點(diǎn)在函數(shù) 的圖象上,或者在某條定直線上,并求出該直線方程;
(3)設(shè),求證:.
哈師大附中高二下學(xué)期期中考試數(shù)學(xué)答案(理科)
三、解答題
17.解:(1)若復(fù)數(shù)為實(shí)數(shù),則有,或……
(2)若復(fù)數(shù)為純虛數(shù),則有且,……
18.解:(1)……
令,或,
令,……
的單調(diào)遞增區(qū)間為,減區(qū)間為
……
(2)當(dāng)時(shí),由(1)知在上遞減,在上遞增,
當(dāng)時(shí)有最小值為,……
若當(dāng)時(shí)不等式恒成立,則只須,即
……
19.解:設(shè)冰雕景區(qū)的長(zhǎng)為米,則寬為米,設(shè)總占地面積為平方米,依題意有
……
令得……
(1)當(dāng)時(shí),則,
此時(shí),當(dāng)且僅當(dāng)時(shí)取等號(hào) ……
(2)當(dāng)時(shí),則,
此時(shí),函數(shù)在上單調(diào)遞增,時(shí),最小 ……
(3)當(dāng)時(shí),
此時(shí),函數(shù)在上單調(diào)遞減,時(shí),最小 ……
答:當(dāng)時(shí),長(zhǎng)取
當(dāng)時(shí),長(zhǎng)取米,寬取米,面積總和最;
當(dāng)時(shí),長(zhǎng)取
20.證明 (1)在直三棱柱中,⊥平面,面 ,⊥
又,為的中點(diǎn),⊥,且面
⊥面
……
(2)連結(jié),,⊥,又⊥面⊥且,面⊥面,面⊥……
(3)過作⊥于,連結(jié),⊥面,且面,
面⊥面,且面面,又⊥,⊥面與平面所成的角為,在中,
與面所成的角的正弦值為
……
21.解:(1)設(shè)橢圓方程為:,,由已知
① ……
,為等腰直角三角形②…
由①②得:,代入橢圓方程得,橢圓方程為……
(2),不妨設(shè),設(shè)直線方程:
聯(lián)立得,
………8
同理,………
且,,………
22解:(1)依題可知,,所以
因?yàn)?sub>,所以則
令,則
故所以(不符合題意,舍去)
所以
(2)證明:由(1)知,,
設(shè)函數(shù)在點(diǎn)處的切線方程為
若有一條切線過點(diǎn),則存在實(shí)數(shù),使
即
令,則
因?yàn)?sub>,所以,當(dāng)或時(shí),;當(dāng)時(shí),
所以,在處取得極大值,在處取得極小值
如果過點(diǎn)可作函數(shù)的兩條切線,則方程有兩個(gè)相異實(shí)根,所以或
即點(diǎn)滿足在曲線上,或者點(diǎn)滿足,在定直線
上
(3)令
因?yàn)?sub>,所以,
所以在上成立,即為上單調(diào)遞增函數(shù),
所以成立,即成立.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com