科目: 來源: 題型:
【題目】已知等比數(shù)列的前n項和為,且當(dāng)時,是與2m的等差中項為實數(shù).
(1)求m的值及數(shù)列的通項公式;
(2)令,是否存在正整數(shù)k,使得對任意正整數(shù)n均成立?若存在,求出k的最大值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】黨的十九大報告指出,在全面建成小康社會的決勝階段,讓貧困地區(qū)同全國人民共同進(jìn)入全面小康社會是我們黨的莊嚴(yán)承諾.在“脫真貧、真脫貧”的過程中,精準(zhǔn)扶貧助推社會公平顯得尤其重要.若某地區(qū)有100戶貧困戶,經(jīng)過一年扶貧后,為了考查該地區(qū)的“精準(zhǔn)扶貧”的成效該地區(qū)脫貧標(biāo)準(zhǔn)為“每戶人均年收入不少于4000元”,現(xiàn)從該地區(qū)隨機(jī)抽取A、B兩個村莊,再從這兩個村莊的貧困戶中隨機(jī)抽取20戶,調(diào)查每戶的現(xiàn)人均年收入,繪制如圖所示的莖葉圖單位:百元.
(1)觀察莖葉圖中的數(shù)據(jù),判斷哪個村莊扶貧成效較好?并說明理由;
(2)計劃對沒有脫貧的貧困戶進(jìn)一步實行“精準(zhǔn)扶貧”,下一年的資金投入方案如下:對人均年收入不高于2000元的貧困戶,每戶每年增加扶貧資金5000元;對人均年收入高于2000元但不高于3000元的貧困戶,每戶每年增加扶貧資金3000元;對人均年收入高于3000元但不高于4000元的貧困戶,每戶每年增加扶貧資金1000元;對已經(jīng)脫貧的貧困戶不再增加扶貧資金投入.依據(jù)此方案,試估計下一年該地區(qū)共需要增加扶貧資金多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),下列說法正確的是__________.的值域是;當(dāng)時,方程有兩個不等實根;若函數(shù)有三個零點時,則;經(jīng)過有三條直線與相切.
查看答案和解析>>
科目: 來源: 題型:
【題目】九章算術(shù)中對一些特殊的幾何體有特定的稱謂,例如:將底面為直角三角形的直三棱柱稱為塹堵,將一塹堵沿其一頂點與相對的棱刨開,得到一個陽馬底面是長方形,且有一條側(cè)棱與底面垂直的四棱錐和一個鱉臑四個面均為直角三角形的四面體在如圖所示的塹堵中,已知,若陽馬的外接球的表面積等于,則鱉臑的所有棱中,最長的棱的棱長為( )
A.5B.C.D.8
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的導(dǎo)函數(shù)在上有三個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,過點且斜率為 的直線和以橢圓的右頂點為圓心,短半軸為半徑的圓相切.
(1)求橢圓的方程;
(2)橢圓的左、右頂點分為A,B,過右焦點的直線l交橢圓于P,Q兩點,求四邊形APBQ面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱錐P-ABCD中,底面ABCD為直角梯形,平面ABCD,且.
(1)求證:平面PBD;
(2)若PB與平面ABCD所成的角為,求二面角D-PC-B的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】高三學(xué)生為了迎接高考,要經(jīng)常進(jìn)行模擬考試,鍛煉應(yīng)試能力,某學(xué)生從升入高三到高考要參加10次模擬考試,下面是高三第一學(xué)期某學(xué)生參加5次模擬考試的數(shù)學(xué)成績表:
模擬考試第x次 | 1 | 2 | 3 | 4 | 5 |
考試成績y分 | 90 | 100 | 105 | 105 | 100 |
(1)已知該考生的模擬考試成績y與模擬考試的次數(shù)x滿足回歸直線方程,若高考看作第11次模擬考試,試估計該考生的高考數(shù)學(xué)成績;
(2)把這5次模擬考試的數(shù)學(xué)成績單放在5個相同的信封中,從中隨機(jī)抽取3份試卷的成績單進(jìn)行研究,設(shè)抽取考試成績不等于平均值的個數(shù)為,求出的分布列與數(shù)學(xué)期望.
參考公式:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正項數(shù)列,滿足:對任意正整數(shù),都有,,成等差數(shù)列,,,成等比數(shù)列,且,.
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列,的通項公式;
(Ⅲ)設(shè)=++…+,如果對任意的正整數(shù),不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
(1)設(shè),判斷在上是否為有界函數(shù),若是,請說明理由,并寫出的所有上界的集合;若不是,也請說明理由;
(2)若函數(shù)在上是以為上界的有界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com