相關(guān)習(xí)題
 0  265217  265225  265231  265235  265241  265243  265247  265253  265255  265261  265267  265271  265273  265277  265283  265285  265291  265295  265297  265301  265303  265307  265309  265311  265312  265313  265315  265316  265317  265319  265321  265325  265327  265331  265333  265337  265343  265345  265351  265355  265357  265361  265367  265373  265375  265381  265385  265387  265393  265397  265403  265411  266669 

科目: 來源: 題型:

【題目】某中學(xué)高二年級組織外出參加學(xué)業(yè)水平考試,出行方式為:乘坐學(xué)校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當(dāng)的學(xué)生選擇自行打車,自行打車的平均時間為 (單位:分鐘) ,而乘坐定制公交的平均時間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時,乘坐定制公交的平均時間少于自行打車的平均時間?

(2)求該校學(xué)生參加考試平均時間的表達(dá)式:討論的單調(diào)性,并說明其實際意義.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知 , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】下列說法正確的是(

A.,的必要不充分條件

B.為真命題為真命題的必要不充分條件

C.命題的否定是:使得

D.命題p,則是真命題

查看答案和解析>>

科目: 來源: 題型:

【題目】給定數(shù)列.,該數(shù)列前的最小值記為,后的最大值記為,令.

1)設(shè)數(shù)列2,16,3,寫出,的值;

2)設(shè)是等比數(shù)列,公比,且,證明:是等比數(shù)列;

3)設(shè)是公差大于0的等差數(shù)列,且,證明:是等差數(shù)列.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的焦距和長半軸長都為2.過橢圓的右焦點作斜率為的直線與橢圓相交于,兩點.

1)求橢圓的方程;

2)設(shè)點是橢圓的左頂點,直線,分別與直線相交于點,.求證:以為直徑的圓恒過點.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求曲線在點處的切線方程;

2)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

3)當(dāng)時,試寫出方程根的個數(shù).(只需寫出結(jié)論)

查看答案和解析>>

科目: 來源: 題型:

【題目】在全民抗擊新冠肺炎疫情期間,北京市開展了停課不停學(xué)活動,此活動為學(xué)生提供了多種網(wǎng)絡(luò)課程資源以供選擇使用.活動開展一個月后,某學(xué)校隨機抽取了高三年級的甲、乙兩個班級進(jìn)行網(wǎng)絡(luò)問卷調(diào)查,統(tǒng)計學(xué)生每天的學(xué)習(xí)時間,將樣本數(shù)據(jù)分成五組,并整理得到如下頻率分布直方圖:

1)已知該校高三年級共有600名學(xué)生,根據(jù)甲班的統(tǒng)計數(shù)據(jù),估計該校高三年級每天學(xué)習(xí)時間達(dá)到5小時及以上的學(xué)生人數(shù);

2)已知這兩個班級各有40名學(xué)生,從甲、乙兩個班級每天學(xué)習(xí)時間不足4小時的學(xué)生中隨機抽取3人,記從甲班抽到的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望;

3)記甲、乙兩個班級學(xué)生每天學(xué)習(xí)時間的方差分別為,,試比較的大小.(只需寫出結(jié)論)

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖一所示,四邊形是邊長為的正方形,沿點翻折到點位置(如圖二所示),使得二面角成直二面角.分別為,的中點.

1)求證:

2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知中,角,,的對邊分別為,,,,________.是否存在以,為邊的三角形?如果存在,求出的面積;若不存在,說明理由.

從①;②;③這三個條件中任選一個,補充在上面問題中并作答.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)零點的個數(shù);

2)若函數(shù)存在兩個零點,證明:

查看答案和解析>>

同步練習(xí)冊答案