相關(guān)習(xí)題
 0  264523  264531  264537  264541  264547  264549  264553  264559  264561  264567  264573  264577  264579  264583  264589  264591  264597  264601  264603  264607  264609  264613  264615  264617  264618  264619  264621  264622  264623  264625  264627  264631  264633  264637  264639  264643  264649  264651  264657  264661  264663  264667  264673  264679  264681  264687  264691  264693  264699  264703  264709  264717  266669 

科目: 來(lái)源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20141月至201612月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是(

A.月接待游客量逐月增加

B.年接待游客量逐年增加

C.各年的月接待游客量高峰期大致在7,8

D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】1)在圓中有這樣的結(jié)論:對(duì)圓上任意一點(diǎn),設(shè)、是圓和軸的兩交點(diǎn),且直線的斜率都存在,則它們的斜率之積為定值-1.試將該結(jié)論類比到橢圓,并給出證明.

2)已知橢圓,,設(shè)直線與橢圓交于不同于的兩點(diǎn)、,記直線、、的斜率分別為、.

(。┤糁本過(guò)定點(diǎn),則是否為定值.若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

(ⅱ)若,求所有整數(shù),使得直線變化時(shí),總有.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)集合是非空集合的兩個(gè)不同子集.

1)若,且的子集,求所有有序集合對(duì)的個(gè)數(shù);

2)若,且的子集,求所有有序集合對(duì)的個(gè)數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)點(diǎn),分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為0.

(1)求橢圓的方程;

(2)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn),是直線上的兩點(diǎn),且,,求四邊形面積的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在四棱錐中,底面是邊長(zhǎng)為2的菱形,的中點(diǎn).

1)證明:平面;

2)設(shè)是直線上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求面與面所成二面角的正弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】隨著中美貿(mào)易戰(zhàn)的不斷升級(jí),越來(lái)越多的國(guó)內(nèi)科技巨頭加大了科技研發(fā)投入的力度.中華技術(shù)有限公司擬對(duì)麒麟手機(jī)芯片進(jìn)行科技升級(jí),根據(jù)市場(chǎng)調(diào)研與模擬,得到科技升級(jí)投入x(億元與科技升級(jí)直接收益y(億元)的數(shù)據(jù)統(tǒng)計(jì)如下:

序號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

x

2

3

4

6

8

10

13

21

22

23

24

25

y

13

22

31

42

50

56

58

68.5

68

67.5

66

66

當(dāng)時(shí),建立了yx的兩個(gè)回歸模型:模型①:;模型②:;當(dāng)時(shí),確定yx滿足的線性回歸方程為

1)根據(jù)下列表格中的數(shù)據(jù),比較當(dāng)時(shí)模型①、②的相關(guān)指數(shù)的大小,并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)對(duì)麒麟手機(jī)芯片科技升級(jí)的投入為17億元時(shí)的直接收益.

回歸模型

模型①

模型②

回歸方程

182.4

79.2

(附:刻畫回歸效果的相關(guān)指數(shù),

2)為鼓勵(lì)科技創(chuàng)新,當(dāng)科技升級(jí)的投入不少于20億元時(shí),國(guó)家給予公司補(bǔ)貼5億元,以回歸方程為預(yù)測(cè)依據(jù),比較科技升級(jí)投入17億元與20億元時(shí)公司實(shí)際收益的大小.

(附:用最小二乘法求線性回歸方程的系數(shù):,

3)科技升級(jí)后,麒麟芯片的效率X大幅提高,經(jīng)實(shí)際試驗(yàn)得X大致服從正態(tài)分布.公司對(duì)科技升級(jí)團(tuán)隊(duì)的獎(jiǎng)勵(lì)方案如下:若芯片的效率不超過(guò)50%,不予獎(jiǎng)勵(lì):若芯片的效率超過(guò)50%,但不超過(guò)53%,每部芯片獎(jiǎng)勵(lì)2元;若芯片的效率超過(guò)53%,每部芯片獎(jiǎng)勵(lì)4元記為每部芯片獲得的獎(jiǎng)勵(lì),求(精確到0.01).

(附:若隨機(jī)變量,則

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求上的最大值和最小值:

2)若,恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】最新研究發(fā)現(xiàn),花太多時(shí)間玩手機(jī)游戲的兒童,患多動(dòng)癥的風(fēng)險(xiǎn)會(huì)加倍.青少年的大腦會(huì)很快習(xí)慣閃爍的屏幕、變幻莫測(cè)的手機(jī)游戲,一旦如此,他們?cè)诮淌业纫曈X刺激較少的地方,就很難集中注意力.研究人員對(duì)110名年齡在7歲到8歲的兒童隨機(jī)調(diào)查,并在孩子父母的幫助下記錄了他們?cè)?/span>1個(gè)月里玩手機(jī)游戲的習(xí)慣.同時(shí),教師記下這些孩子出現(xiàn)的注意力不集中問題.統(tǒng)計(jì)得到下列數(shù)據(jù):

注意力不集中

注意力集中

總計(jì)

不玩手機(jī)游戲

20

40

60

玩手機(jī)游戲

30

20

50

總計(jì)

50

60

110

1)試估計(jì)7歲到8歲不玩手機(jī)游戲的兒童中注意力集中的概率;

2)能否在犯錯(cuò)誤的概率不超過(guò)0.010的前提下認(rèn)為玩手機(jī)游戲與注意力集中有關(guān)系?

附表:

td style="width:27.75pt; border-top-style:solid; border-top-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.62pt; vertical-align:middle">

10.828

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.840

5.024

6.635

7.879

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù))在上至少存在兩個(gè)不同的滿足,且上具有單調(diào)性,點(diǎn)和直線分別為圖象的一個(gè)對(duì)稱中心和一條對(duì)稱軸,則下列命題中正確的是(

A.的最小正周期為

B.

C.上是減函數(shù)

D.圖象上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變),得到的圖象,則

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】有如下命題,其中真命題的標(biāo)號(hào)為(

A.若冪函數(shù)的圖象過(guò)點(diǎn),則

B.函數(shù),且)的圖象恒過(guò)定點(diǎn)

C.函數(shù)有兩個(gè)零點(diǎn)

D.若函數(shù)在區(qū)間上的最大值為4,最小值為3,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案