科目: 來源: 題型:
【題目】以下4個命題:
1)三個點可以確定一個平面;
2)平行于同一個平面的兩條直線平行;
3)拋物線對稱軸為軸;
4)同時垂直于一條直線的兩條直線一定平行;
正確的命題個數為__.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線C:經過點,A,B是拋物線C上異于點O的不同的兩點,其中O為原點.
(1)求拋物線C的方程,并求其焦點坐標和準線方程;
(2)若,求面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:的離心率為,其兩個頂點和兩個焦點構成的四邊形面積為.
(1)求橢圓C的方程;
(2)過點的直線l與橢圓C交于A,B兩點,且點M恰為線段AB的中點,求直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數f(x)=ax-3lnx(a為常數)與函數g(x)=-xlnx在x=1處的切線互相平行.
(1)求a的值;
(2)求函數y=f(x)在[1,2]上的最大值和最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了調查某省高三男生身高情況,現(xiàn)從某校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于157.5cm和187.5cm之間,將測量結果按如下方式分成6組:第一組,第二組,…,第六組,下圖是按照上述分組方法得到的頻率分布直方圖.
(1)求該學校高三年級男生的平均身高;
(2)利用分層抽樣的方式從這50名男生中抽出20人,求抽出的這20人中,身高在177.5cm以上(含177.5cm)的人數;
(3)從根據(2)選出的身高在177.5cm以上(含177.5cm)的男生中任意抽取2人,求此二人來自于不同組的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,隨著互聯(lián)網技術的快速發(fā)展,共享經濟覆蓋的范圍迅速擴張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農家樂”等形式開始在很多平臺上線.某創(chuàng)業(yè)者計劃在某景區(qū)附近租賃一套農房發(fā)展成特色“農家樂”,為了確定未來發(fā)展方向,此創(chuàng)業(yè)者對該景區(qū)附近六家“農家樂”跟蹤調查了天.得到的統(tǒng)計數據如下表,為收費標準(單位:元/日),為入住天數(單位:),以頻率作為各自的“入住率”,收費標準與“入住率”的散點圖如圖
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
(1)若從以上六家“農家樂”中隨機抽取兩家深入調查,記為“入住率”超過的農家樂的個數,求的概率分布列;
(2)令,由散點圖判斷與哪個更合適于此模型(給出判斷即可,不必說明理由)?并根據你的判斷結果求回歸方程.(結果保留一位小數)
(3)若一年按天計算,試估計收費標準為多少時,年銷售額最大?(年銷售額入住率收費標準)
參考數據:
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱臺ABC﹣A1B1C1中,底面ABC是邊長為2的等邊三角形,上、下底面的面積之比為1:4,側面A1ABB1⊥底面ABC,并且A1A=A1B1,∠AA1B=90°.
(1)平面A1C1B∩平面ABC=l,證明:A1C1∥l;
(2)求平面A1C1B與平面ABC所成二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com