【題目】已知橢圓C:的離心率為,其兩個頂點和兩個焦點構(gòu)成的四邊形面積為.
(1)求橢圓C的方程;
(2)過點的直線l與橢圓C交于A,B兩點,且點M恰為線段AB的中點,求直線l的方程.
【答案】(1)(2)直線l的方程為
【解析】
(1)根據(jù)橢圓的幾何性質(zhì)求得,;
(2)聯(lián)立直線與橢圓,由根與系數(shù)關(guān)系得到兩根之和,再根據(jù)中點公式列式可求得斜率k,從而求得直線l的方程.
解:(1)橢圓C的離心率為,,
,即
橢圓C的兩個頂點和兩個焦點構(gòu)成的四邊形面積為,
,,從而得,
橢圓C的方程為;
(2)顯然,直線l的斜率存在,設(shè)該斜率k,
直線l的方程為,即,
直線l的方程與橢圓C的方程聯(lián)立,消去y得:
且該方程顯然有二不等根,
記A,B兩點的坐標(biāo)依次為,,
,即,
,解得,
所求直線l的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD⊥平面ABCD,點E、F分別是AB和PC的中點.
(1)求證:AB⊥平面PAD;
(2)求證:EF//平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率為,橢圓上一點到左右兩個焦點的距離之和是4.
(1)求橢圓的方程;
(2)已知過的直線與橢圓交于兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱臺ABC﹣A1B1C1中,底面ABC是邊長為2的等邊三角形,上、下底面的面積之比為1:4,側(cè)面A1ABB1⊥底面ABC,并且A1A=A1B1,∠AA1B=90°.
(1)平面A1C1B∩平面ABC=l,證明:A1C1∥l;
(2)求平面A1C1B與平面ABC所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體中,,,、分別是所在棱、的中點,點是棱上的動點,聯(lián)結(jié),.如圖所示.
(1)求異面直線,所成角的大小(用反三角函數(shù)值表示);
(2)(理科)求以、、、為頂點的三棱錐的體積.
(文科)求以、、、為頂點的三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在五邊形中,,,,,是以為斜邊的等腰直角三角形.現(xiàn)將沿折起,使平面平面,如圖②,記線段的中點為.
(1)求證:平面平面;
(2)求平面與平面所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】河道上有一拋物線型拱橋,在正常水位時,拱圈最高點距水面8m,拱圈內(nèi)水面寬24m,一條船在水面以上部分高6.5m,船頂部寬6m.
(1)試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拱橋所在的拋物線的標(biāo)準(zhǔn)方程;
(2)近日水位暴漲了1.54m,為此,必須加重船載,降低船身,才能通過橋洞,試問:船身至少應(yīng)該降低多少?(精確到0.1m)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點為,上頂點為,原點O到直線的距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點T在圓上,點A為橢圓的右頂點,是否存在過點A的直線l交橢圓C于點B(異于點A),使得成立?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com