【題目】已知橢圓的一個(gè)焦點(diǎn)為,上頂點(diǎn)為,原點(diǎn)O到直線的距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)T在圓上,點(diǎn)A為橢圓的右頂點(diǎn),是否存在過點(diǎn)A的直線l交橢圓C于點(diǎn)B(異于點(diǎn)A),使得成立?若存在,求出直線l的方程;若不存在,請說明理由.
【答案】(1) (2) 存在滿足條件的直線,其方程為.
【解析】
(1)根據(jù)條件列方程組,解得即可,(2)設(shè)直線方程,與橢圓方程聯(lián)立方程組,利用韋達(dá)定理解得B點(diǎn)坐標(biāo),再根據(jù)條件得T點(diǎn)坐標(biāo),代入圓方程,解得直線斜率,即得結(jié)果.
解:(1)由橢圓的一個(gè)焦點(diǎn)為知:,即.①.
又因?yàn)橹本的方程為,即,所以.
由①解得.
故所求橢圓的標(biāo)準(zhǔn)方程為.
(2)假設(shè)存在過點(diǎn)的直線適合題意,則結(jié)合圖形易判斷知直線的斜率必存在,
于是可設(shè)直線的方程為,
由,得.(*)
因?yàn)辄c(diǎn)是直線與橢圓的一個(gè)交點(diǎn),且
所以,所以,
即點(diǎn).
所以,即.
因?yàn)辄c(diǎn)在圓上,所以,
化簡得,解得,所以.
經(jīng)檢驗(yàn)知,此時(shí)(*)對應(yīng)的判別式,滿足題意.
故存在滿足條件的直線,其方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,其兩個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的四邊形面積為.
(1)求橢圓C的方程;
(2)過點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),且點(diǎn)M恰為線段AB的中點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線的左、右焦點(diǎn)為,,為右支上的動點(diǎn)(非頂點(diǎn)),為的內(nèi)心.當(dāng)變化時(shí),的軌跡為( )
A.直線的一部分B.橢圓的一部分
C.雙曲線的一部分D.無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,側(cè)面底面,為棱的中點(diǎn),為棱上任意一點(diǎn),且不與點(diǎn)、點(diǎn)重合..
(1)求證:平面平面;
(2)是否存在點(diǎn)使得平面與平面所成的角的余弦值為?若存在,求出點(diǎn)的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研究投入.為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷,得到一組檢測數(shù)據(jù)如表所示:
試銷價(jià)格(元) | ||||||
產(chǎn)品銷量(件) |
已知變量,具有線性相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得回歸直線方程分別為:甲/span>;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.
(1)試判斷誰的計(jì)算結(jié)果正確?求回歸方程。
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過1,則該檢測數(shù)據(jù)是“理想數(shù)據(jù)”.現(xiàn)從檢測數(shù)據(jù)中隨機(jī)抽取3個(gè),求“理想數(shù)據(jù)”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
某學(xué)校高一數(shù)學(xué)興趣小組對學(xué)生每周平均體育鍛煉小時(shí)數(shù)與體育成績優(yōu)秀(體育成績滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進(jìn)行分析研究,他們從本校初二,初三,高一,高二,高三年級各隨機(jī)抽取了40名學(xué)生,記錄并整理了這些學(xué)生周平均體育鍛煉小時(shí)數(shù)與體育成績優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:
初二 | 初三 | 高一 | 高二 | 高三 | |
周平均體育鍛煉小時(shí)數(shù)工(單位:小時(shí)) | 14 | 11 | 13 | 12 | 9 |
體育成績優(yōu)秀人數(shù)y(單位:人) | 35 | 26 | 32 | 26 | 19 |
該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是初三,高一,高二的3組數(shù)據(jù),請根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過1,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?
參考數(shù)據(jù):,.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程,其中是某范圍內(nèi)的隨機(jī)數(shù),分別在下列條件下,求上述方程有實(shí)根的概率.
(1)若隨機(jī)數(shù);
(2)若是從區(qū)間中任取的一個(gè)數(shù),是從區(qū)間中任取的一個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列.
(1)若,求數(shù)列的前項(xiàng)和;
(2)若存在正整數(shù),使得,試比較與的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)斜率為的直線與拋物線交于、兩點(diǎn),點(diǎn)是線段的中點(diǎn),求直線的方程,并求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com