【題目】已知頂點在原點,焦點在軸上的拋物線過點.
(1)求拋物線的標準方程;
(2)斜率為的直線與拋物線交于、兩點,點是線段的中點,求直線的方程,并求線段的長.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個焦點為,上頂點為,原點O到直線的距離為.
(1)求橢圓C的標準方程;
(2)若點T在圓上,點A為橢圓的右頂點,是否存在過點A的直線l交橢圓C于點B(異于點A),使得成立?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,∠ABC=30°.△ABD中,∠ADB=90°,∠ABD=45°,且AC=1.將△ABD沿邊AB折疊后,
(1)若二面角C—AB—D為直二面角,則直線CD與平面ABC所成角的正切值為_______;
(2)若二面角C—AB—D的大小為150°,則線段CD的長為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在多面體中,四邊形為平行四邊形,平面平面,,,,,,,點是棱上的動點.
(Ⅰ)當時,求證平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)若二面角所成角的余弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓為左右焦點,為短軸端點,長軸長為4,焦距為,且,的面積為.
(Ⅰ)求橢圓的方程
(Ⅱ)設動直線橢圓有且僅有一個公共點,且與直線相交于點.試探究:在坐標平面內是否存在定點,使得以為直徑的圓恒過點?若存在求出點的坐標,若不存在.請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用0與1兩個數(shù)字隨機填入如圖所示的5個格子里,每個格子填一個數(shù)字,并且從左到右數(shù),不管數(shù)到哪個格子,總是1的個數(shù)不少于0的個數(shù),則這樣填法的概率為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),過點且傾斜角為的直線與曲線交于兩點.
(1)求的取值范圍;
(2)求中點的軌跡的參數(shù)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com