精英家教網 > 高中數學 > 題目詳情

【題目】如圖,△ABC中,∠BAC90°,∠ABC30°.△ABD中,∠ADB90°,∠ABD45°,且AC1.將△ABD沿邊AB折疊后,

1)若二面角CABD為直二面角,則直線CD與平面ABC所成角的正切值為_______;

2)若二面角CABD的大小為150°,則線段CD的長為_______

【答案】

【解析】

作出二面角的平面角.

1)當二面角為直角時,判斷出直線與平面所成的角,解直角三角形求得線面角的正切值.

2)當二面角大小為時,結合余弦定理進行解三角形,由此求得的長.

依題意ABC中,∠BAC90°,∠ABC30°.△ABD中,∠ADB90°,∠ABD45°,且AC1.所以,.設分別是的中點,所以,,所以是二面角的平面角,.

1)當二面角為直角時,由于,根據面面垂直的性質定理可知平面,所以是直線img src="http://thumb.zyjl.cn/questionBank/Upload/2020/11/26/17/39a1a048/SYS202011261741258328971401_DA/SYS202011261741258328971401_DA.004.png" width="29" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />與平面所成的角..

2)當二面角大小為時,即,在三角形中,由余弦定理得.在三角形和三角形中,,由余弦定理得,,.

故答案為:(1). (2).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】雙曲線的左、右焦點為,右支上的動點(非頂點),的內心.變化時,的軌跡為(

A.直線的一部分B.橢圓的一部分

C.雙曲線的一部分D.無法確定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設關于的一元二次方程,其中是某范圍內的隨機數,分別在下列條件下,求上述方程有實根的概率.

1)若隨機數

2)若是從區(qū)間中任取的一個數,是從區(qū)間中任取的一個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列是首項為1,公差為的等差數列,數列是首項為1,公比為的等比數列.

(1)若,求數列的前項和;

(2)若存在正整數,使得,試比較的大小,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一元線性同余方程組問題最早可見于中國南北朝時期(公元世紀)的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”問題,原文如下:有物不知數,三三數之剩二,五五數之剩三,問物幾何?即,一個整數除以三余二,除以五余三,求這個整數.設這個整數為,當時, 符合條件的共有_____個.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓E(ab0)的離心率為,且橢圓E的短軸的端點到焦點的距離等于2

1)求橢圓E的標準方程;

2)己知AB分別為橢圓E的左、右頂點,過x軸上一點P(異于原點)作斜率為k(k0)的直線l與橢圓E相交于CD兩點,且直線ACBD相交于點Q.①若k1,求線段CD中點橫坐標的取值范圍;②判斷是否為定值,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓的左焦點為,下頂點為,上頂點為,是等邊三角形.

(Ⅰ)求橢圓的離心率;

(Ⅱ)設直線,過點且斜率為的直線與橢圓交于點 異于點,線段的垂直平分線與直線交于點,與直線交于點,若.

(ⅰ)求的值;

(ⅱ)已知點,點在橢圓上,若四邊形為平行四邊形,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知頂點在原點,焦點在軸上的拋物線過點.

1)求拋物線的標準方程;

2)斜率為的直線與拋物線交于、兩點,點是線段的中點,求直線的方程,并求線段的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在無窮數列中,是給定的正整數,,

(Ⅰ)若,寫出的值;

(Ⅱ)證明:數列中存在值為的項;

(Ⅲ)證明:若互質,則數列中必有無窮多項為

查看答案和解析>>

同步練習冊答案