【題目】已知函數(shù)f(x)=lnx﹣2ax,a∈R.
(Ⅰ)若函數(shù)y=f(x)存在與直線2x﹣y=0垂直的切線,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)g(x)=f(x)+ ,若g(x)有極大值點(diǎn)x1 , 求證: >a.

【答案】解:(Ⅰ)因?yàn)閒′(x)= ﹣2a,x>0, 因?yàn)楹瘮?shù)y=f(x)存在與直線2x﹣y=0垂直的切線,
所以f′(x)=﹣ 在(0,+∞)上有解,
﹣2a=﹣ 在(0,+∞)上有解,
也即x= 在(0,+∞)上有解,
所以 >0,得a> ,
故所求實(shí)數(shù)a的取值范圍是( ,+∞);
(Ⅱ)證明:因?yàn)間(x)=f(x)+ x2= x2+lnx﹣2ax,
因?yàn)間′(x)=
①當(dāng)﹣1≤a≤1時(shí),g(x)單調(diào)遞增無(wú)極值點(diǎn),不符合題意,
②當(dāng)a>1或a<﹣1時(shí),令g′(x)=0,設(shè)x2﹣2ax+1=0的兩根為x1和x2 ,
因?yàn)閤1為函數(shù)g(x)的極大值點(diǎn),所以0<x1<x2
又x1x2=1,x1+x2=2a>0,所以a>1,0<x1<1,
所以g′(x1)=x12﹣2ax1+ =0,則a= ,
要證明 >a,只需要證明x1lnx1+1>ax12 ,
因?yàn)閤1lnx1+1﹣ax12=x1lnx1 +1=﹣ x1+x1lnx1+1,0<x1<1,
令h(x)=﹣ x3 x+xlnx+1,x∈(0,1),
所以h′(x)=﹣ x2 +lnx,記P(x)=﹣ x2 +lnx,x∈(0,1),
則P′(x)=﹣3x+ =
當(dāng)0<x< 時(shí),p′(x)>0,當(dāng) <x<1時(shí),p′(x)<0,
所以p(x)max=p( )=﹣1+ln <0,所以h′(x)<0,
所以h(x)在(0,1)上單調(diào)遞減,
所以h(x)>h(1)=0,原題得證
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為x= 在(0,+∞)上有解,求出a的范圍即可;(Ⅱ)求出g(x)的解析式,通過(guò)討論a的范圍,問(wèn)題轉(zhuǎn)化為證明x1lnx1+1>ax12,令h(x)=﹣ x+xlnx+1,x∈(0,1),根據(jù)函數(shù)的單調(diào)性證明即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中AA1=AD=1,E為CD中點(diǎn).
(Ⅰ)求證:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長(zhǎng);若不存在,說(shuō)明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小為30°,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了增強(qiáng)環(huán)保意識(shí),某社團(tuán)從男生中隨機(jī)抽取了60人,從女生中隨機(jī)抽取了50人參加環(huán)保知識(shí)測(cè)試,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

40

20

60

女生

20

30

50

總計(jì)

60

50

110

(1)試判斷是否有99%的把握認(rèn)為環(huán)保知識(shí)是否優(yōu)秀與性別有關(guān);

(2)為參加市舉辦的環(huán)保知識(shí)競(jìng)賽,學(xué)校舉辦預(yù)選賽,現(xiàn)在環(huán)保測(cè)試優(yōu)秀的同學(xué)中選3人參加預(yù)選賽,已知在環(huán)保測(cè)試中優(yōu)秀的同學(xué)通過(guò)預(yù)選賽的概率為,若隨機(jī)變量表示這3人中通過(guò)預(yù)選賽的人數(shù),求的分布列與數(shù)學(xué)期望.

附:

0.500

0.400

0.100

0.010

0.001

0.455

0.708

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=4x與點(diǎn)M(0,2),過(guò)C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若 =0,則k=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為4 ,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|+|2x+1|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若關(guān)于x的方程 =a的解集為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖程序框圖的算法思路源于數(shù)學(xué)名著《幾何原本》中的“輾轉(zhuǎn)相除法”,執(zhí)行該程序框圖(圖中“m MOD n”表示m除以n的余數(shù)),若輸入的m,n分別為495,135,則輸出的m=( )

A.0
B.5
C.45
D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題,其中正確的命題是____.(填出所有正確命題的序號(hào))

x=y=sin2x+)的一條對(duì)稱(chēng)軸;

y=esin2x是以π為周期在(0)上的增函數(shù);

③函數(shù)y=3sin2x+)的圖象可由y=3sin2x的圖象向左平移個(gè)單位得到.

④設(shè)x1、x2是關(guān)于x的方程|logax|=ka0,a≠1k0)的兩根,則x1x2=1;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市交通部門(mén)為了對(duì)該城市共享單車(chē)加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車(chē)的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照,,分成5組,制成如圖所示頻率分直方圖.

(1)求圖中x的值;

(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

(3)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案